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Abstract 

There is plenty of literature about the theoretical and philosophical differences between 

frequentist and Bayesian approaches. However, surprisingly little research has been conducted 

with regard to comparing these methods in performance. This thesis aims to provide a 

comparison of the discriminatory performances of Bayesian and frequentist methods, confined to 

making inferences about proportions and binomial data. The results of the simulation study show 

that the ROC curves of the p-value and Bayes factor coincide when M1 is specified as a 

symmetric probability distribution. When this is not the case, the decision qualities of the 

Bayesian approach is as good as the prior that was used. By matching the “rejection regions” of 

Bayesian and frequentist tests, the tests would yield equal decision qualities. It would be better 

practice to combine both procedures by calibrating Bayesian decision rules into frequentist 

decision rules (or vice versa) to ensure effective control of Type I error probabilities while 

simultaneously take advantage of the Bayesian benefits. 
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Decision Qualities of Bayesian and Frequentist Hypothesis Tests applied to Binomial 

Experiments with Predetermined Sample Sizes 

According to García & Puga (2018) “it seems that for most researchers, statistical 

practice is becoming an automated procedure in which most researchers tend to blindly use 

statistical approaches to make decisions based on their data”. For over the last 75 years, the 

predominant option and mainstream statistical analysis is characterized by using the null 

hypothesis significance testing (NHST) procedure with the p-value being a tool to decide about 

the null hypothesis (García & Puga, 2018; Kruschke & Liddell, 2018b). The term “null 

hypothesis testing” in this article refers to point-value hypothesis testing for which the 

hypothesis being tested is a specific value of a parameter: the null hypothesis value. The p-value 

represents the number of times we would observe a sample statistic, or more extreme one, in case 

the null hypothesis is true in the population sampled from, and an experiment with a set sample 

size is repeated several times under the same conditions (García & Puga, 2018).  

Shift to estimation with uncertainty 

Many articles and books propose that a better option would be to discard the p-value and 

encourage a shift to estimation with uncertainty (Cumming, 2014). For example by not only 

including effect sizes and their 95% CIs in analyses, but also focusing the attention on these 

values in order to emphasize the importance and precision of the estimated effect size (Halsey, 

Curran-everett, Vowler, & Drummond, 2015; Kruschke & Liddell, 2018b). Effect sizes and their 

95% CIs can be used to make threshold-based decisions about statistical significance in the same 

way as the p-value can be applied (their decisions will always correspond), but they provide 

more information than the p-value. In addition, the effect size and 95% CIs allow findings from 
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several experiments to be combined with meta-analysis to obtain more accurate effect-size 

estimates.  

Confidence Intervals in combination with a specified “Region Of Practical Equivalence” 

(which will be referred to as the “CI+ROPE” approach) can be used when the experimenter is 

indifferent about a smaller effect size or difference from the null hypothesis value but does care 

about a larger difference (Barker, Rolka, Rolka, & Brown, 2001). With this approach it would be 

possible to find evidence that two populations are “practically equivalent”. 

Shift to Bayesian analyses 

The p-value does not computes the probability of the observed data under the null 

hypothesis (H0), but the probability of the observed data and more extreme data under H0 

(Hubbard & Lindsay, 2008). Therefore, the p-value denotes not only the probability of what was 

observed, but also the probabilities of the more extreme events that did not occur. Besides, the p-

value and CIs depend on the stopping and testing intentions of the researcher (Kruschke & 

Liddell, 2018b). As a result, different stopping or testing intentions yield different p-values and 

CIs for any fixed set of observed data.  

Secondly, the p-value cannot provide evidence for the null hypothesis (Dienes, 2016). 

Despite that, a non-significant result is often in practice taken as evidence for a null hypothesis. 

But “absence of evidence is not evidence of absence” (Altman, 1995). 

According to Bayesians, these are major weaknesses regarding the usefulness of p-values 

(Hubbard & Lindsay, 2008; Kruschke & Liddell, 2018b). They charge that a valid measure of 

strength of evidence cannot be dependent on the probabilities of unobserved outcomes. Bayesian 

statistics combine prior beliefs about phenomena with observed data to update this belief 

according to the laws of probability theory (García & Puga, 2018; See & Cohen, 2007). One 
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Bayesian alternative to frequentist NHST is the Bayes factor (BF) approach (Kruschke, 2011). 

The Bayesian equivalent of the CI+ROPE approach is the High Density Interval & Region Of 

Practical Equivalence (which will be referred to as the “HDI+ROPE” decision rule). 

However, Bayesian inference is not without controversies among statisticians (Gelman, 

2008). Especially the use of priors is still object of hot discussions (García & Puga, 2018). 

Opponents of the Bayesian approach reason that scientist should be concerned with objective 

knowledge rather than subjective priors. In his article, Gelman (2008) quotes Andrew 

Ehrenbergh who wrote “Bayesianism assumes: (a) Either a weak or uniform prior, in which case 

why bother?, (b) Or a strong prior, in which case why collect new data?, (c) Or more 

realistically, something in between, in which case Bayesianism always seems to duck the issue”.  

Besides, Bayesian analysis ignores error rates as they do not take into account results that 

were not observed (Kruschke & Liddell, 2018b). Therefore, Bayesian analysis cannot (directly) 

control them.  

Previous Research Performance of Bayesian and Frequentist approaches 

There is plenty of literature about the theoretical and philosophical differences between 

frequentist and Bayesian approaches (Bolstad & Curran, 2016; Kruschke & Liddell, 2018b; 

Ortega & Navarrete, 2017). However, surprisingly little research has been conducted regarding 

the comparison of these methods in terms of performance (Jeon & De Boeck, 2017). In 

diagnostic tests with dichotomous outcomes (positive/negative test results), the conventional 

approach of diagnostic test evaluation uses sensitivity or “proportion true positives” (the 

probability of obtaining a positive result when there is indeed an effect) and specificity or “one 

minus the proportion false positives” (the probability of obtaining a positive result when there is 

no effect present) as measures of accuracy (Hajian-Tilaki, 2013). 
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The HDI+ROPE decision rule is relatively new and was first described by Kruschke in 

2010. Beside theoretical comparisons, the decision quality of the CI+ROPE approach and 

HDI+ROPE approach have not been compared in a (simulation) study in terms of decision 

qualities.    

Only a few studies have investigated the proportion true positives and the proportion 

false positives of the p-value and the BF separately (García & Puga, 2018; Jeon & De Boeck, 

2017). However, these studies did not address the relationship between sensitivity and specificity 

when assessing the decision qualities of the respective tests. In this light, it should be noted that 

neither the proportion true positives as the proportion false positives in itself validly represent the 

tests’ discriminatory performance as high sensitivity may be accompanied by low specificity 

(Glas, Lijmer, Prins, Bonsel, & Bossuyt, 2003). After all, the sensitivity is inversely related with 

specificity (Hajian-Tilaki, 2013). 

Measuring Decision Quality 

A more informative measure would be to combine the proportion true positives and the 

proportion false positives into a single performance index, being the positive likelihood ratio 

(LR+) (Florkowski, 2008; Hajian-Tilaki, 2013). The positive likelihood ratio of a test is the ratio 

of the probability of obtaining a positive result when there is indeed an effect and the probability 

of obtaining a positive result when there is no effect. For Frequentist NHST, the LR+ is the ratio 

of the power to the significance threshold (Bayarri et all. 2016). 
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Because sensitivity and specificity of the four methods depend on their decision 

thresholds which are chosen arbitrarily, assessing the proportion true positives and proportion 

false positives for one cut-off as a measure of accuracy is not particularly informative 

(Florkowski, 2008; Hajian-Tilaki, 2013). Rather, by assessing the sensitivity and specificity for a 

range of different thresholds, the proportion true positives can be plotted against the proportion 

false positives, yielding a more informative comparison measure called receiver operating 

characteristic (ROC) curve (Florkowski, 2008). In other words, the ROC curve graphically 

displays the trade-off between sensitivity and one minus the specificity among different 

thresholds. For every proportion true positives and every proportion false positives, the LR+ can 

be obtained from the ROC curve: the slope of a ROC curve at any point is equal to the LR+. 

The ROC curve plays a central role in evaluating the diagnostic ability of tests to 

discriminate the true state of subjects and comparing two alternative diagnostic tasks when each 

task is performed on the same subject (Hajian-Tilaki, 2013). A ROC curve lying on the diagonal 

line reflects the performance of a diagnostic test that is no better than chance level. A ROC curve 

that is closer to the upper left-hand corner corresponds to a greater discriminant capacity. In 

contrast to single measures of sensitivity, specificity and the LR+, the ROC curve is not affected 

by decision criteria.  

Aim study  

Because hypothesis testing is very well-established in science (Bolstad & Curran, 2016), 

it would be interesting to know whether Bayesian tests outperform frequentist tests (or vice 

versa) in decision accuracy when testing a hypothesis. This thesis aims to provide a comparison 

of the discriminatory performances of Bayesian and frequentist methods, confined to making 

inferences about proportions and binomial data, using the example of assessing whether a coin is 
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‘fair’.  In this study, the p-value will be compared to a proposed Bayesian alternative: the Bayes 

factor. Besides, the CI+ROPE decision rule will be compared to its Bayesian equivalent: the 

HDI+ROPE decision rule. To do so, a simulation study is conducted that calculates the 

proportion true positives and false positives among different prior settings, different effect sizes 

and different sample sizes. The decision thresholds of the p-value and BF will be varied to obtain 

(an estimation of) their ROC curves. The simulation study is explorative in nature; no explicit 

hypotheses were stated beforehand.  

Before discussing the simulation study and the result, each method will be introduced in 

the next chapter to obtain a deeper understanding of the logic behind each method, how the 

methods are conducted and how inferences are made as knowing the differences and similarities 

will be essential for interpreting the results. 
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Methods 

Frequentist methods 

When testing whether a coin is fair or not, the question asked by frequentists would be 

“What is the  probability of obtaining a sample proportion that is as extreme as, or more extreme 

than the obtained sample proportion, given that the null hypothesis is true and if we were to 

collect data the same way we collect data in the actual research?” (See & Cohen, 2007). If this 

probability is small enough, the null hypothesis is rejected. This approach to hypothesis testing is 

closely related to Popper’s theory in which scientific theories are never accepted as being true, 

but instead are only subjected to increasingly severe tests (Johnson, 2013).  

Frequentist NHST using p-values 

In the example of a coin, the null hypothesis would be that we have a fair coin; the true 

parameter value of the coin (𝜃) is 0.5. The alternative hypothesis is that the coin is not fair. This 

is denoted as 𝐻0: 𝜃 = 0.5 and 𝐻1: 𝜃 ≠ 0.5. To test whether the coin is fair, we count the number 

of heads when we flip the coin N times. Let the random variable Y be the observed number of 

heads in a sample of N Bernoulli trials and let S be the sample space of y when the sample size is 

n; 𝑆 = {0, 1, 2, … , 𝑛}. The conditional probability function for y, given that 𝜃 = 0.5 is given by: 

 𝑓(𝑌 = 𝑦 | 𝜃 = 0.5)  =  (
𝑛

𝑦
) 0.5𝑦 (1 − 0.5)𝑛−𝑦 for y =  0, 1, … , 𝑛 

(1) 

 (Bolstad, 2016).  

A p-value is used to describe the probability of getting the actual outcome, or an outcome more 

extreme when the null hypothesis would be true (Kruschke, 2015). For a one-tailed test that 

corresponds to the hypothesis H1 : θ > 0.5, this can be obtained from equation (1) by adding all 

the probabilities of obtaining the observed y (yobs) and the more extreme y’s such that 𝑝1−𝑡𝑎𝑖𝑙 =

 ∑ 𝑓(𝑌 = 𝑦 | 𝜃 = 0.5) 𝑛
𝑦=𝑦𝑜𝑏𝑠 (See & Cohen, 2007). To calculate the two-sided p-value that 
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corresponds to 𝐻1: 𝜃 ≠ 0.5, we need to consider the more extreme values at both the high and 

the low end of the sampling distribution. The two-sided p-value is given by: 

𝑝2−𝑡𝑎𝑖𝑙 = 

{
 
 

 
     2 ∑ 𝑓(𝑌 = 𝑦 | 𝜃 = 0.5)

𝑛

𝑦=𝑦𝑜𝑏𝑠

     if 𝑦𝑜𝑏𝑠 ≥ 
𝑛

2
 

   2 ∑ 𝑓(𝑌 = 𝑦 | 𝜃 = 0.5)

𝑛−𝑦𝑜𝑏𝑠

𝑦=0

     if 𝑦𝑜𝑏𝑠 ≤ 
𝑛

2

 

 

 

(2) 

Figure 1 visualizes how the two-sided p-value is calculated for an example where yobs = 7 

and N = 10. The p-value is the summed probability density of the blue bars; the probability of 

obtaining 7 or more heads plus the probability of obtaining 3 heads or less.  

 

Figure 1 The p-value for yobs = 7 and N=10 is the summed probability density of the blue bars; the 

probability of obtaining 7 or more heads: 𝑝(𝑦 = 7) + 𝑝(𝑦 = 8) + … +  𝑝(𝑦 = 10) ≈ 0.1718 plus the 

probability of obtaining (𝑁 − 7)=3 heads or less :𝑝(𝑦 = 3) + 𝑝(𝑦 = 2) + … +  𝑝(𝑦 = 0) ≈  0.1718. 

If the underlying assumptions used to calculate the p-value hold, a smaller p-value means 

greater statistical incompatibility of the data with the null hypothesis and therefore providing 

more evidence to reject the null hypothesis (ASA; Wasserstein & Lazar, 2016). 

Making an inference based on the p-value 

In frequentist analysis, the decision rule is established by keeping the overall false alarm 

rate (a.k.a., Type I error rate) limited to a specified α (Kruschke & Liddell, 2018b). In NHST, this 

is achieved by specifying the significance threshold 𝛼 (Bayarri et al., 2016). The significance 
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threshold is the probability under the null hypothesis that the test statistic falls in the rejection 

region (the Type I error probability). In practice, the significance threshold is fixed, typically at α 

= 0.05. A p-value smaller or equal to α indicates there is enough evidence to reject the null and a 

p-value larger than α indicates there is not enough evidence in the data to reject the null (Mulder 

& Wagenmakers, 2016). 

𝑝 ≤ 𝛼 ∶ 𝐻1 

𝑝 > 𝛼 ∶ 𝐻0 

Proportion false and true positives p-value 

Setting the significant level at 𝛼 (typically 𝛼 = 0.05) assumes that rejecting the null will 

result in a 𝛼 × 100% Type I error (Jeon & De Boeck, 2017). Therefore, the proportion false 

positives are given by P(𝑝 ≤  𝛼 | 𝐻0) =  𝛼.  

Setting the significance level at 𝛼 pins down the probability of obtaining a true-positive 

result, given by P(𝑝 ≤ 𝛼 | 𝐻1) (Bayarri et al., 2016). 
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CI+ROPE Decision Rule 

In the frequentist hypothesis testing framework, it is statistically impossible to support 

the hypothesis that a true effect size is exactly zero (Lakens, 2017). However, it is possible to 

assert that the true difference is unlikely to be outside a certain range by testing for equivalence 

(Jones, Jarvis, Lewis, & Ebbutt, 1996). Therefore, in contrast with NHST, the null hypothesis is 

not fixed at a specific point but set at a specified interval (l,u). Such that 

𝐻0: 𝑙 ≤  𝜃 ≤ 𝑢 

𝐻1: 𝑙 > 𝜃 or  𝑢 < 𝜃 

Combining a ‘range of equivalence’ with confidence intervals is a very simple equivalence 

testing approach.  

Confidence intervals 

According to Bolstad & Curran (2016), CIs are used by frequentists to find an interval 

that has a high probability of containing the true value of the parameter 𝜃. In the long run, (1 − 

α) × 100% of CIs will include the true value of the parameter 𝜃 and an unidentified 5% will 

miss. The reasoning is that one CI most likely includes the true value of the parameter 𝜃, but it 

might not.  

Calculating CIs for a binomial parameter 

When the sampling distribution of the estimator used is approximately normal, with mean 

equal to the true value, the CI for the estimation of the binomial parameter θ would be 

 

𝐶𝐼(1−2α)∗100 = 𝜃  ± 𝑧𝛼/2  ×  √
�̂�(1−�̂�)

𝑛
  where  𝜃 =  

𝑦

𝑛
 

(W. M. Bolstad & Curran, 2016).  

(3) 
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Specifying a ROPE 

Based on what the researcher indicates as the smallest relevant difference between the 

hypothesized θ and the true θ, an upper (u) and lower (l) equivalence bound is specified (Lakens, 

2017). The equivalence bounds can be based on either standardized differences (e.g. ± Cohen’s d 

= 3) or raw scores on a scale point (e.g. ± 0.1). The interval between the two equivalence bounds 

knows many different names in literature: ‘ROPE (region of practical equivalence)’, ‘null 

region’, ‘range of equivalence’, ‘equivalence interval’, ‘indifference zone’, ‘smallest effect size 

of interest’ and ‘good-enough belt’ (Dienes, 2016; Jones et al., 1996; Kruschke & Liddell, 

2018b).  

In the example of a coin, we would ask ourselves when would we label the coin as being 

‘unfair’. If we want to assess whether the chance of getting ‘heads’ when flipping the coin is 

approximately 0.5, would we really bother when the chance of getting heads is 0.489 or 0.512? 

For example, we might judge these proportions as practically equivalent to 0.5 and define our 

region of practical equivalence as [0.45 0.55] meaning that we are only interested to see whether 

the chance of getting heads is either more than 55% or less than 45%. 

  



Decision Qualities of Bayesian and Frequentist Hypothesis Tests     14 

Making an inference based on the CI+ROPE decision rule 

When the CI is contained within the null region, the null region hypothesis can be 

accepted: we can conclude that θ falls within the equivalence bounds (𝑙 ≤  𝜃 ≤  𝑢), meaning that 

the difference is not large enough to be relevant (Dienes, 2016). The H1 can be accepted when 

the interval is entirely outside the null region (𝑙 > 𝜃 or  𝑢 < 𝜃). If the interval falls neither fully 

inside or outside the null region, but spans both the null region and regions outside, the data do 

not discriminate between H0 and H1:  

𝐶𝐼 ⊆ 𝑅𝑂𝑃𝐸 ∶  H0 

𝐶𝐼 ∩ 𝑅𝑂𝑃𝐸 =  ∅ ∶  H1 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∶  no decision 

Proportion false and true positives CI+ROPE 

A false positive would be when the CI is outside the ROPE, even though the true θ is 

inside the null hypothesis interval [𝑙, 𝑢]; α = 𝑃(𝐶𝐼(1−2α)∗100  ∩ 𝑅𝑂𝑃𝐸  |  𝑙 ≤  𝜃 ≤  𝑢) . 

If a (1 − 2α) ∗ 100% CI is used to decide on equivalence, then the probability of the Type I 

error is α (Jones et al., 1996). So, for example, if a 95% interval is used, then α = 0.025.  

A true positive would be when the CI is outside the ROPE when indeed the alternative 

hypothesis is true; given by 𝑃(𝐶𝐼(1−2α)∗100  ∩ 𝑅𝑂𝑃𝐸| 𝑙 > 𝜃 or  𝑢 < 𝜃). 
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Bayesian methods 

Bayesian approaches have gained attention as an alternative method to NHST (Jeon & De 

Boeck, 2017). The question asked by Bayesians when testing the coin would be “Given the 

observed number of heads, which parameter values are most likely when we also take the prior 

information into account?’’. The Bayes’ rule derived from definitions of conditional probability 

is designed to answer this question (Kruschke, 2015). The factors of Bayes’ rule are likelihood, 

prior and evidence: 

𝑝(𝜃|𝑑𝑎𝑡𝑎) =
𝑝(𝑑𝑎𝑡𝑎|𝜃)  ×   𝑝(𝜃)

𝑝(𝑑𝑎𝑡𝑎)
    𝑜𝑟  𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
         

(4) 

 

Bayesians reason that the posterior gives an indication of how strongly we should have 

trust in the various parameter values, given the data. How the Bayes’ rule is derived exactly, can 

be found in Appendix 3. 

Bayesian model comparison 

In Bayesian model comparison, the analyst sets up two competing models in the form of 

density functions which distribute the prior probabilities among all possible outcomes (Y) 

differently (Kruschke, 2011). When the data is obtained, the analyst calculates which model is 

more credible given the data.  

Suppose we have two models; 𝑀1 and 𝑀0. Application of the Bayes’ rule (equation 4) 

yields that 𝑃(𝑀1|𝐷) =  
𝑝(𝐷|𝑀1)𝑃(𝑀1)

𝑃(𝐷)
  and  𝑃(𝑀0|𝐷) =  

𝑝(𝐷|𝑀0)𝑃(𝑀0)

𝑃(𝐷)
. By taking the ratio of the 

two expressions above, the common denominator 𝑃(𝐷) drops out, resulting in the next formula: 

 
𝑃(𝑀1|𝐷)
𝑃(𝑀0|𝐷)

=
𝑝(𝐷|𝑀1)

𝑝(𝐷|𝑀0)
×
𝑃(𝑀1)

𝑃(𝑀0)
      (5) 
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This equation specifies that, after observing the data, the posterior odds in favor of M1 versus M0 

( 
𝑝(𝑀1|𝐷)

𝑝(𝑀0|𝐷)
 ) is the ratio of the probability of the data given one model, relative to the probability of 

the data given a second model ( 
𝑝(𝐷|𝑀1)

𝑝(𝐷|𝑀0)
; also denoted as likelihood ratio), times the ratio of the 

prior beliefs ( 
𝑃(𝑀1)

𝑃(𝑀0)
 ). The likelihood ratio is the Bayes factor. The Bayes factor is one of the 

most popular Bayesian methods in selecting which of the two hypotheses fits the data better 

(Garc & Chen, 2005). It is common to use subscript on Bayes factors to refer to the models being 

compared (Rouder, Morey, Speckman, & Province, 2012). The first subscript refers to the model 

in the numerator and the second subscript refers to the model in the denominator such that:  

𝐵𝐹10 =
𝑝(𝐷|𝑀1)

𝑝(𝐷|𝑀0)
 =  

1

𝐵𝐹01
 

(6) 

Conceptually, the Bayes factor is simple; it is the ratio of the probabilities of the observed 

data under the two hypotheses (Morey, Romeijn, & Rouder, 2016). However, it is important to 

realize that the Bayes factor gives an indication of which model is a better predictor for the 

obtained data; it does not depend on one of the models being true (See & Cohen, 2007).  

Bayesian hypothesis test using Bayes factors 

From a Bayesian perspective, the fact that the null hypothesis is unlikely is not a 

sufficient reason to reject the null hypothesis as the data may be even more unlikely under the 

alternative hypothesis (Morey et al., 2016). The question asked when testing the null hypothesis 

that the coin is fair using the Bayes factor would be “Is the observed number of heads more likely 

to be obtained under the alternative hypothesis than under the null hypothesis?’’. 

In Bayesian hypothesis testing using Bayes factors, the Bayes factor indicates the 

credibility of a particular alternative hypothesis relative to the null hypothesis(Morey et al., 

2016). In Bayesian hypothesis testing, the null hypothesis and alternative hypothesis correspond 
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to two models; M0 and M1 respectively. Therefore, unlike NHST, for a Bayesian hypothesis test, 

an alternative hypothesis must be specified in the form of a prior distribution on the parameter 

(Kruschke & Liddell, 2018b). For H0, the corresponding prior probability density function would 

place all the credibility on θ = 0.5 and zero on every other θ. The null hypothesis is compared 

against an alternative prior distribution that spreads prior credibility over other values of the 

parameter.  

For binomial observations, the alternative prior is usually specified as a beta distribution 

because the beta distribution is conjugate to the binomial distribution, which makes calculations 

easier (Bolstad, 2016).  

The marginal likelihood for M0 (i.e. the probability of the data given M0 ) is given by the 

conditional probability function for y given θ = 0.5 (equation 1). The marginal likelihood for 𝐻1 

is more difficult to calculate, because in 𝐻1 θ is not set to one value but is located within the 

interval [0 1] (Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010). In general, the marginal 

likelihood for H1 is obtained by: 𝑝(𝐷|𝑀1) = ∫𝑝(𝐷|𝜃,𝑀1)𝑝(𝜃|𝑀1)𝑑𝜃 (Wagenmakers et al., 

2010). However, when we choose the alternative hypothesis to be a probability density function 

that places equal probability to every value of θ over the parameter space ϴ such that 

𝑝(𝜃|𝑀1) ~ 𝐵𝑒𝑡𝑎(1,1), the marginal likelihood for M1 famously simplifies to 𝑝(𝐷|𝑀1) =

1/(𝑛 + 1). The marginal likelihoods for 𝑀0 and 𝑀1 for an example where N = 20 are plotted as 

respectively blue and grey vertical bars in figure 2. The ratio of the marginal likelihoods of M1 

and M0 (BF10) is plotted as red dots.  
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Figure 2 The marginal likelihoods for M0 (blue bars) and M1 (grey bars) for an example where N=20.  

The Bayes factor (BF10) , the ratio of the two marginal likelihoods is plotted in red 

To illustrate obtaining the Bayes Factor in the case of null hypothesis testing, suppose we 

have flipped a coin 20 times and we obtained 15 heads. The marginal likelihood for M0 would 

be: 𝑝(𝑦 = 15 |𝑛 = 20,𝑀0)  =  (
20
15
)0.515 (1 − 0.5)20−15 = 0.0147857. The marginal likelihood 

for M1 would be 𝑝(𝑦 = 15 |𝑛 = 20,𝑀1) =
1

20+1
= 0.0476190. The corresponding Bayes factor 

would be 𝐵𝐹10 =
𝑝(𝑦=15|𝑛=20,𝐻1)

𝑝(𝑦=15|𝑛=20,𝐻0)
≈  

0.0147857

0.0019991
≈ 3.2 . By looking at “number of heads = 15” at 

the x-axis in figure 2 (denoted with the dashed lining) we could have gotten a good estimation of 

the 𝐵𝐹10 as the light grey bar a little bit more than 3 times as tall as the light blue bar. According 

to Bayesian inference, this indicates that the data are about 3.2 times as likely to have occurred 

under H1 than under H0  (See & Cohen, 2007). 

Importantly, notice that the BF does not indicate the posterior odds of the two hypotheses 

as it ignores the prior odds ratio (i.e. how likely is H1 versus how likely is H0 before the data is 

observed, not to be confused with the prior probability density of the two models) (Kruschke & 

Liddell, 2018b). If the alternative hypothesis has a minuscule prior probability (for example we 
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know that 99% of the coins in circulation is fair and 1% is unfair), then BF10 must be enormous 

to compensate and a posterior probability that favors the null. The posterior probabilities of the 

models can be obtained by multiplying the BF by the prior odds ratio (see equation 5) (Kruschke, 

2018b). Note that when the prior odds of the models are 50/50, then the Bayes factor numerically 

equals the posterior odds. Ultimately, Bayesians are interested in the posterior odds of the two 

models, but by reporting the BF, readers can use their own prior odds to determine the posterior 

odds.  

From equation (5) follows that BF10 indicates how much odds of the models have shifted 

from prior to posterior (John K Kruschke, 2018b). Therefore, a second way of calculating the 

Bayes factor is by taking the ratio of the posterior odds to the prior odds.   

Making an inference based on the BF 

According to the common decision rule for Bayesian null-hypothesis, the Bayes factor is 

compared against a decision threshold BFcrit (Kruschke & Liddell, 2018b). When BF01 > BFcrit, 

the null hypothesis is accepted. Conversely, when BF01 < 1/BFcrit, the alternative hypothesis is 

accepted. The BF can also be defined with respect to the alternative hypothesis BF10, which is 

simply the reciprocal of BF01: 𝐵𝐹10 =
1

𝐵𝐹01
 (Kruschke, 2018b).  

BF10  >  BF𝑐𝑟𝑖𝑡 ∶  𝐻1 

BF10 <  1/BF𝑐𝑟𝑖𝑡 ∶  𝐻0 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∶  𝑛𝑜 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

The choice of the decision threshold is set by practical considerations, just like the 

decision threshold of the p-value (Kruschke & Liddell, 2018a). A BF between 3 and 10 is 

supposed to indicate “moderate” evidence; a Bayes factor between 10 and 30 indicates “strong” 
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evidence and a Bayes factor greater than 30 indicates “very strong” evidence for the winning 

model.  

False-alarm and true-positive rate  

For the Bayes factor, the proportion false-alarms when making an inference would be 

𝑃(𝐵𝐹10 > 𝐵𝐹𝑘𝑟𝑖𝑡 | 𝐻0 ) which is equivalent to 𝑃(𝐵𝐹01 < 1/𝐵𝐹𝑘𝑟𝑖𝑡 | 𝐻0 ). In contrast to the 

frequentist NHST approach, where the false-positive rate is insensitive to sample size, the false-

positive rate of the Bayes factor decreases when the sample size becomes higher (Jeon & De 

Boeck, 2017). Besides sample size, effect size and 𝐵𝐹𝑐𝑟𝑖𝑡, the false-positive rate also depends on 

how M1 is specified (i.e. which outcomes are assigned to be more probable given that the 

alternative hypothesis is true) (Morey et al., 2016).  

For the Bayes factor, the proportion true positives when making an inference would be 

𝑃(𝐵𝐹10 > 𝐵𝐹𝑐𝑟𝑖𝑡 | 𝐻1 ) which is equivalent to 𝑃(𝐵𝐹01 < 1/𝐵𝐹𝑐𝑟𝑖𝑡 | 𝐻1 ). The power increases 

in a monotonic way as a function of sample size, effect size and 𝐵𝐹𝑐𝑟𝑖𝑡 and also depends on the 

prior probability distribution of the alternative hypothesis (Jeon & De Boeck, 2017; Morey et al., 

2016).  
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HDI+ROPE 

In a Bayesian framework, a probability distribution across the space of parameter values 

is specified to represent the uncertainty in parameter values (Kruschke, 2018a). The Bayesian 

inference is merely the re-allocation of this uncertainty in parameter values, or “updating the 

probability distribution”, according to the mathematics of conditional probability. The result is a 

posterior probability distribution across all possible parameter values. From the posterior 

distribution on the parameter we can assess what the 95% most credible values are (Kruschke & 

Liddell, 2018a). This interval is called the 95% HDI.  Analogous to the frequentist method of 

CI+ROPE, Bayesians can make an inference about the null hypothesis based on the range of 

most credible parameter values in combination with a region of practical equivalence (ROPE).  

The question asked when testing the coin using the HDI+ROPE approach would be “Given the 

observed number of heads, are the 95% most probable parameter values (when taking prior 

information into account) inside or outside the ROPE, or neither?’’. The 95% HDI is obtained 

from the posterior distribution. The next paragraph will briefly explain how the posterior 

distribution is calculated.  

Posterior distribution  

The posterior distribution is a probability density among all the possible parameter values 

(Kruschke, 2018a). Recall from equation (4) that the posterior can be obtained from the 

likelihood 𝑝(𝐷|𝜃), prior 𝑝(𝜃) and evidence 𝑝(𝐷).  

The likelihood is closely linked to the conditional probability function for y given a fixed 

θ or the binomial likelihood function (see equation 1). If we look at this same relationship 

between θ and y, but we hold y fixed at the number of heads we obtained by flipping the coin N 

times, and if we let θ vary over its possible values, we have the likelihood function given by: 



Decision Qualities of Bayesian and Frequentist Hypothesis Tests     22 

𝑝(𝐷|𝜃) = 𝑓(𝑦 | 𝑛, 𝜃)  =  (
𝑛

𝑦
) 𝜃𝑦 (1 − 𝜃)𝑛−𝑦 for 0 ≤ θ ≤ 1 

(7) 

 (Bolstad, 2016) 

 The relationship between θ and y remains the same as in equation (1), but now 𝑦 is fixed 

at the value that occurred and the subject of the formula has changed to the parameter. The 

binomial likelihood function as a function of θ (equation 7) has the same form as a Beta(a,b) 

distribution: a product of θ to a power times (1-θ) to another power (Bolstad, 2016). 

The prior 𝑝(𝜃) can be specified as a Beta(a,b) distribution (Kruschke, 2010). For 

example, the 𝑎 and 𝑏 in the beta prior can be thought of as if they were previously observed data 

in which there were 𝑎 heads and 𝑏 tails. Four examples of different beta priors are visualized in 

figure 3. 

 

 

 

 

 

The beauty of using a Beta(a,b) distribution as a prior is that, when the beta prior is 

multiplied with the binomial likelihood, the exponents of θ and (1-θ) of the binomial likelihood 

can simply be added to the beta prior to obtain the beta posterior (Bolstad, 2016). There is no 

need for integration or complicated calculations to find the posterior. When the prior distribution 

Beta(1,1)  

Beta(5,5)  

Beta(1,5)  

Beta(5,1)  

Figure 3: When we only know that the coin has a head side and a tail side, this would tantamount to having 

previously observed one head and one tail; corresponding to a Beta(1,1) prior. When we have previously 

observed 5 heads and 1 tail, this would result in a Beta(5,1) prior; placing more credibility on higher θ values. 

Conversely, a Beta(1,5) prior places more credibility on lower θ values. When we have previously observed 5 

heads and 5 tails, the highest credibility is placed at θ = 0.5 while higher and lower values of θ are moderately 

probable too.   
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is Beta(θ, 𝑎, 𝑏), and the data have y heads in N flips, then the posterior distribution is Beta(θ; y + 

a, n-y + b). The math behind this simple rule can be found in Appendix 4.  

When 𝑎 and b would be the previously observed number of heads and tails respectively, y 

+ a would be the number of heads of the two studies in total while n-y + b would be the number 

of tails of the two studies in total, thereby simply updating the previous knowledge with the new 

results. For this reason Kruschke (2010) reasons that “consensually informed prior distributions 

permit cumulative scientific knowledge to rationally affect conclusions drawn from new 

observations”. 

HDI 

The 95% High Density Interval (HDI) is the collection of all the parameter values with 

the highest probability density in the posterior distribution, such that the total probability of 

values in the 95% HDI is 95% (Kruschke, 2018a). The width of the HDI indicates the 

uncertainty about the parameter value. 

ROPE 

The second key ingredient in the decision method is a range of parameter values that is 

good enough for practical purposes (Kruschke, 2018a). This procedure is equivalent to the 

procedure of specifying the region of practical equivalence as used by frequentist equivalence 

testing using CIs. 
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Making an inference based on the HDI+ROPE decision rule 

The decision rule itself is analogous to the decision rule of the frequentist equivalence 

testing method using CIs. If the 95% HDI of the parameter distribution falls completely outside 

the ROPE, the null value is rejected because the 95% most credible values of the parameter are 

all not practically equivalent to the null value (Kruschke, 2018a). The null value is accepted for 

practical purposes when the 95% HDI of the parameter distribution falls completely inside the 

ROPE, because the 95% most credible values of the parameter are all practically equivalent to 

the null value. Otherwise, when the 95% HDI is neither of both, some of the most credible values 

are practically equivalent to the null while other of the most credible values are not. In these 

cases no decision is made: 

𝐻𝐷𝐼 ⊆ 𝑅𝑂𝑃𝐸 ∶  𝐻0 

𝐻𝐷𝐼 ∩ 𝑅𝑂𝑃𝐸 =  ∅ ∶  𝐻1 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∶  no decision 

False positives rate and true positives rate 

A false positive would be when the HDI is entirely outside the ROPE even though the 

true θ is inside the null hypothesis interval [𝑙, 𝑢], which is given by 𝑃(𝐻𝐷𝐼 ∩ 𝑅𝑂𝑃𝐸 = ∅ |  𝑙 ≤

 𝜃 ≤  𝑢). Likewise, a true positive would be the probability that the HDI is outside the ROPE 

when indeed the alternative hypothesis is true, which is given by 𝑃(𝐻𝐷𝐼 ∩ 𝑅𝑂𝑃𝐸 = ∅ | 𝑙 >

𝜃 or  𝑢 < 𝜃). 
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Simulation study 

The goal of the simulation study is assessing the decision qualities of the two frequentist 

and Bayesian methods by comparing their ROC curves under different conditions (i.e. different 

effect sizes, different sample sizes and different (alternative) priors of the Bayesian methods).  

Methods 

Programs, packages, and functions used 

The experiment was executed in the R software (version 3.4.3. for Windows, R Core 

Team, 2017), using RStudio (version 1.1.423 for Windows, RStudio Team, 2016). Besides using 

the native functions implemented in the R software, I downloaded the package Hmisc (version 

4.1-1., F.E. Harrell, 2018) to calculate binomial confidence intervals and the function 

“HDIofICDF” to calculate the Bayesian High Density Intervals. The function HDIofICDF is 

provided by Kruschke on his website, in the DBDA2EPROGRAMS.ZIP file (Kruschke, 2016).  

Computing the test statistics & making inferences 

The R-codes for calculating a two-tailed p-value, the Bayes factor (BF10) and High 

Density Interval are adopted from Kruschke (2015). The (Wilson) CIs are calculated using the 

“binconf” function in the Hmisc package (Harrell, 2018). For the p-value, the alternative 

hypothesis was accepted when p ≤ α. For the Bayes factor, the alternative hypothesis was 

accepted when BF10 > BFcrit. For the CI+ROPE method, the alternative hypothesis was accepted 

when the entire 95%CI was outside the specified ROPE interval. For the HDI+ROPE method, 

the alternative hypothesis was accepted when the entire 95%HDI was outside the specified 

ROPE interval. 
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Settings & Data generation 

One thousand samples were generated for every condition (sample size * effect size) by 

using two big for-loops. Each sample consisted of 0’s and 1’s generated under the true parameter 

value, indicated by the effect size, with as many elements as indicated by the sample size. The 

different sample sizes computed were: 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300 and 

400. The different effect sizes (in Cohen’s h) simulated were: 0, 0.2, 0.3, 0.4, 0.5 which 

corresponds with a ‘true θ’ of respectively 0.5000, 0.5990, 0.6478, 0.6947, 0.7397. See appendix 

4 why Cohen’s h is an appropriate effect size for the difference in proportions and how the 

Cohen’s h is computed. In total, the experiment had (14*5) 70 different conditions and 70 

thousand samples. The R script used for the experiments can be found in Appendix 6. 

The ROPE was specified according to Kruschke’s advice (2018a); set the limits by ±1/2 

times what would be a small effect according to Cohen when there is no way to specify ROPE 

limits by their real-world consequences. Because we might say that an effect is practically 

equivalent to zero if it is less than half of a small effect (Kruschke, 2018a). According to Cohen, 

a small effect is Cohen’s h = 0.2 (Cohen, 1988). Therefore, for the CI+ROPE and HDI+ROPE 

method, the ROPE limits were set corresponding to an effect size of ± Cohen’s h = 0.1. This 

corresponds with an interval of [0.4501, 0.5499]. For the CI+ROPE and HDI+ROPE criteria, the 

test statistic and corresponding decision about the null hypothesis and alternative hypothesis 

based on the obtained sample was calculated.  

For the p-value and Bayes factor, for every sample, the obtained test statistic for the p-

value and Bayes factor was compared with various specified α and critical Bayes factors 

respectively. The corresponding decision for every threshold was saved temporarily. The 

different decision threshold for the p-value (α’s) were: 0.05, 0.025, 0.02, 0.015, 0.01, 0.005, 
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0.001, 0.0005, 0.0002, 0.0001. The critical Bayes factors: 1.5, 2, 3, 4, 5, 6, 7, 8, 10, 15, 30, 50, 

80, 100.  

For every condition, the proportion false alarms (when Cohen’s h = 0) or true positives 

(when Cohen’s h > 0) for the CI+ROPE and HDI+ROPE criteria and the different decision 

thresholds for the p-value and Bayes factors were calculated and saved.  

This entire procedure was executed 4 times with different prior distributions (M1 for the 

Bayes factor) Beta(a,b) for the Bayes factor and HDI in order to assess the decision qualities for 

prior distributions that place higher credibility in different directions. In experiment 1, a uniform 

prior distribution was used; Beta(1,1). The settings for the second, third and fourth experiment 

were Beta(1,5), Beta(5,1) and Beta(5,5) respectively. These priors correspond with the four 

situations as previously described and visualized in figure 3: placing credibility equally among al 

θ’s, placing more credibility among higher θ’s, placing more credibility among lower θ’s and 

placing more credibility among θ’s around θ = 0.5 respectively.  

Data visualization 

For each experiment and each different effect size separately, the proportion true 

positives against the false positives for the p-value and Bayes factor among various cut-offs and 

different sample sizes are plotted in a graph. Plotting all the sample sizes in one graph becomes 

very crowded and the information provided by the sample sizes higher than 80 did not add new 

information. Therefore, only the sample sizes 20 up to and including 80 are included in the 

following plots. The trade-off between the obtained false positives and true positives of the 

CI+ROPE and HDI+ROPE criteria are visualized as symbols in the graph. The different plots for 

the different effect sizes yielded the same information in terms of relationship between the four 

methods. Therefore, proportions false positives and proportions true positives are averaged and 
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plotted in one graph for a better overview of the results. This results in four graphs; one for every 

experiment. They are reported under results. The plots that display the effect sizes separately are 

included in Appendix 1.  
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Results 

Experiment 1: beta(1,1)        Experiment 2: beta(1,5) 

 

 

 

 

 

 

 

 

Experiment 3: beta(5,1)       Experiment 4: beta(5,5) 
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General result: 

In every experiment, at one point on the ROC curve of the Bayes factor, the decision 

threshold for the Bayes factor results in equal proportion false positives and true positives as the 

(95%) HDI and ROPE criterium (the ▲ in the plots). Likewise, in every experiment, at one point 

on the ROC curve of the p-value, the decision threshold for the p-value (α) results in equal 

proportion false positives and true positives as the (95%) CI and ROPE criterium. 

Experiment 1: Beta(1,1) 

In this setting, the p-value and Bayes factor yield equal ROC curves and therefore have 

equal overall accuracy.  

The CI+ROPE and HDI+ROPE criteria have equal proportion false positives and 

proportion true positives in all sample sizes except for N=40. This holds for every effect size (as 

can be inspected from the original plots in Appendix 1). Out of curiosity, a follow-up study is 

conducted with the same settings as the original experiment, except that the sample size N is set 

at N=20 up until N=60 with steps of 1. Appendix 2 shows the resulting plot for the ROPE 

approaches. Of the 41 different sample sizes, the CI+ROPE and HDI+ROPE have unequal 

LR+’s 9 times, without any clear pattern dictating which sample sizes do or do not overlap. 

Remarkably, when the LR+’s are not equal, the HDI+ROPE approaches are less conservative, 

yielding higher false positive and true positive rates. This indicates that the 95% HDI must be 

smaller than the 95% CI (as the same ROPEs were used).  

Experiment 2: Beta(1,5) 

The ROC curves of the p-value are closer to the upper left-hand corner in comparison 

with the ROC curves of the Bayes factor. Therefore, the results yield that under these 
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circumstances the p-value is overall more accurate; it has a better trade-off between the 

proportion true positives and false positives.  

Experiment 3: Beta(5,1) 

The ROC curves of the Bayes factor are closer to the upper left-hand corner in 

comparison with the ROC curves of the p-value. Therefore, the results yield that in these 

circumstances, the Bayes factor is overall more accurate; it has a better trade-off between the 

proportion true positives and false positives.  

Experiment 4: Beta(5,5) 

In this setting, the p-value and Bayes factor yield equal ROC curves and therefore have 

an equal overall accuracy again. Although in contrast with experiment 1, the x-axis is much 

wider as the curves for the Bayes factor now reach higher false positive rates and higher true 

positive rates. In contrast with experiment 1, the CI+ROPE and HDI+ROPE do not have equal 

false positive rates and true positive rates except for N=40, where they do have the same false 

positive and true positive rate. The latter is exactly the opposite from what was observed in 

experiment 1. 
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Theoretical explanation for the observed results 

Introducing Ɍ𝒚, 𝐑𝐋𝐲 and 𝐑𝐔𝐲 

The results can be explained by how every method is obtained, as described in the 

previous chapter. However, in order to explain the results from the four experiments, I first 

introduce an ordering of the sampling space 𝑆 (which contains all the possible number of heads 

given N) that can be applied to all four tests to establish notation; seeking a tool to compare the 

four methods in equal terms and to discover similarities and differences between the methods 

that explain the obtained results. 

The first step is to realize that, for all the four methods, the obtained number of heads y 

completely determines the inference that will be made for every method. Before flipping the 

coin, when we know how many times we are going to flip the coin (N) and we have specified the 

decision thresholds by specifying α, BFcrit, CI(1−2α)∗100, HDIx% and ROPE, we can assess 

beforehand whether we will reject the null hypothesis for every y ∈ Y. Therefore, before flipping 

the coin, we can already specify a rejection region Ɍ, the acceptance region 𝒜 and a no decision 

region Ɲ (which is empty for the p-value) in terms of y for every method. Such that 𝒜y ∪ Ɲ y ∪

Ɍy = Y and 𝒜y ∩ Ɲ y ∩ Ɍy =  ∅. For a two-sided test, the rejection region consists of both low 

and high y’s (y >
N

2
) and low y’s (y <

N

2
). For a two-sided test we can split Ɍy into two subsets: 

RLy ∪ RU y = Ɍy, RLy ∩ RU y = ∅ such that 

RLy  ∋ { y <
N

2
,   y ∈  Ɍy } 

RUy  ∋ { y >
N

2
,   y ∈  Ɍy } 
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The relationship between Ɍ𝐲, 𝐑𝐋𝐲 and 𝐑𝐔𝐲 and false positives and true positives 

By definition, the proportion false positives is P(y ∈  Ɍ𝐲 |H0) and the proportion true 

positives P(y ∈  Ɍ𝐲 |H1).  

It is common knowledge that in frequentist NSHT a one-sided test can offer a large gain 

in power over the corresponding two-sided test (Neuhävser, 2004). For the total proportion false 

positives (Ry) it makes no difference whether RLy is bigger than RUy, or vice versa. However, 

when H1 is true with θ> 0.5, the chances of obtaining a low number of heads such that y ∈  RL𝐲 

are much smaller than obtaining a high number of heads such that y ∈  RU𝐲. For this situation, 

given that the size of Ɍy is set, the test would have a maximum power when RUy = Ɍy (a one-

sided test in the right direction) and zero power when RLy = Ɍy (a one-sided test in the wrong 

direction). The opposite is true when H1 is true with θ < 0.5. For this situation, given that the size 

of Ɍy is set, the test would have a maximum power when RLy = Ɍy (a one-sided test in the right 

direction) and zero power when RUy = Ɍy (a one-sided test in the wrong direction). 

In sum, the proportion false positives does not depend on either the sizes of RLy or RUy 

separately. Instead, only the size of the two sets taken together (Ɍy) determines the proportion 

false positives. But, when the alternative hypothesis is true, the proportion true positives is 

(depending on the direction of the true effect) determined by either the RLy or RUy. 

In the next paragraphs, the “symmetry” of Ɍy (are RLy and RUy of equal length?) for each 

of the four methods will be discussed. This “symmetry” will be key in explaining the observed 

results of the simulation experiment. 
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Ɍ𝒚, 𝐑𝐋𝐲 and 𝐑𝐔𝐲 for the p-value 

The size of Ɍy for the frequentist methods is almost directly specified by α, such that 

P(y ∈  Ɍy | H0) = α. Looking at the formula for the two-sided p-value when the null hypothesis 

is θ=0.5 (equation 2), we see that RLy and RUy are symmetrical in the sense that they contain an 

equal number of y’s. In other words, α is equally distributed among the two tails.  

Ɍ𝒚, 𝐑𝐋𝐲 and 𝐑𝐔𝐲 for the CI & ROPE criterium 

Again, the size of Ɍy is almost directly specified by α, such that P(y ∈  Ɍy | θl ≤  θ ≤

 θu) = α. Recalling the formula for calculating the CI (equation 3), we can see that a confidence 

interval is symmetrical in the sense that the interval between 
y

n
 and the upper limit of the CI and 

the interval between the lower limit of the CI and  
y

n
 are of the same length. The CI is 

symmetrically centered around 
y

n
. 

In the case of our coin experiment, when the ROPE is centered at θ=0.5 and the upper 

and lower ROPE bounds are equally far away from θ=0.5, then RLy and RUy are symmetrical as 

well. However, when the ROPE bounds are not symmetrical this does not hold as either higher y 

will be more likely to provide evidence to reject the null interval than lower y or vice versa; RLy 

and RUy are not equally large.  

Ɍ𝒚, 𝐑𝐋𝐲 and 𝐑𝐔𝐲 for the Bayes Factor 

Recall that the BF is the ratio of the probabilities of the observed data under the null and 

alternative hypothesis. Ɍ𝑦 is set such that 

𝑃(𝑦 | 𝑦 ∈  Ɍ𝑦 , 𝐻1)

𝑃(𝑦 | 𝑦 ∈  Ɍ𝑦 , 𝐻0)
≥ 𝐵𝐹𝑐𝑟𝑖𝑡 
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From figure 3 we can see that, when the marginal likelihood of M0 and M1 are 

symmetrically centered around θ=0.5 (plot 1 and plot 3), the red line in the plot that represent the 

BF10 is also symmetrical and centered around θ=0.5; otherwise it is not (plot 2). When the 

alternative probability distribution places more credibility on 0.5<θ, then 𝑅𝐿𝑦< 𝑅𝑈𝑦 (see for 

example plot 2). When the prior probability distribution places more credibility on 0.5>θ, then 

𝑅𝐿𝑦> 𝑅𝑈𝑦 (see for example plot 2). 

 

Figure 3. Three plots in which the marginal likelihoods of M0 and M1 are plotted and the corresponding 

BF’s are plotted as red dots. The yellow shaded region visualizes  Ɍ𝑦. Plot 1 displays the marginal 

likelihoods of M0 and M1 when M1 has a uniform prior probability distribution. Plot 2 displays the 

marginal likelihoods of M0 and M1 when M1 places more credibility on 0.5<θ. Plot 3 displays the 

marginal likelihoods of M0 and M1 when M1 places more credibility on 0.5>θ.  

 Ɍ𝒚, 𝐑𝐋𝐲 and 𝐑𝐔𝐲 for the HDI + ROPE criterium 

The 95% completely depends on the posterior distribution. Recall that when the prior 

distribution is Beta(θ|a,b), then the posterior distribution is Beta(θ|y+a, N-y+b). Therefore, the 

prior distribution determines whether the 95% HDI is symmetrical and centered at the center 

(θ=0.5) or not; when a = b, the posterior distribution and 95% HDI are symmetrical. As with the 

CI+ROPE criterium, when both the ROPE and the 95% HDI are symmetrical, the RLy and RUy 

are equally large.  
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Explanation result experiment I 

Recall that, with a uniform prior, for all four methods, RLy and RUy are equally large. 

When we realize that Ɍy is fully determined by the chosen critical value for each test (and for 

HDI+ROPE and CI+ROPE also the ROPE interval), it becomes clear that one can adjust the 

critical value of a Bayesian test to match the Ɍy with the Ɍy of a frequentist test. In figure 5 this 

“matching” is visualized for a p-value test with α = 0.05 and the Bayes factor with BFcrit = 3. 

When the Ɍy of a Bayesian and a frequentist test coincide, their decisions will be the same and 

therefore their false positives to false negatives ratio will be equal too.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The first row displays the Ry (the red region) for a two-sided frequentist test with alfa = 0.05 

(left) and a Bayesian null hypothesis test with BFcrit = 3 (right). The second row displays on the left the 

Bayesian test that would yield the same Ry as the frequentist test and on the right the alfa that would 

correspond with the proportion false alarms of the BF>3 test.  
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This explains why the ROC Curves for the BF and p-value coincide and why the 

observed trade-offs between true positives and false positives for the HDI+ROPE and CI+ROPE 

are also on the ROC curve of the Bayes factor and p-value.  

As an example, table 1 displays the critical Bayes factor that would yield equal rejection 

regions (and therefore equal false and true positives) among different sample sizes. Here we can 

see the convergence between the α, that remains the same over all sample sizes, and the BFcrit, 

that increases with the sample size; as described by the Lindley’s Paradox (Hubbard & Lindsay, 

2008; Sprenger, 2013). This is because the Bayes factor is a comparative method where the 

sample size plays a role in interaction with the effect size, while the decision thresholds of 

frequentist measures are independent of the sample size. 

 

Table 1 

 

BFcrit Matched to α=0.05 for Different Sample Sizes (N) 

N 10 20 30 40 50 60 70 80 90 100 

Bfcrit 9.309 

 

3.221 

 

2.421 

 

2.229 

 

2.242 2.367 

 

1.488 

 

1.682 

 

1.201 

 

1.392 

 

Note: The corresponding BFcrit that would yield equal rejection regions compared to a p-value 

test with α = 0.05; with M1 specified as a Beta(1,1) distribution 
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Explanation result experiment II 

In experiment 2, the alternative model M1 that is used to calculate the Bayes factor and as 

a prior for the HDI places more probability on lower θ values. Therefore, RLy > RUy for the 

Bayes factor and HDI+ROPE method. When the four tests have an equally large Ɍy, the two 

frequentist tests yield RLy= RUy while the two Bayesian tests (with a prior of Beta(1,5)) yield 

RLy> RUy. From this it follows that when Ɍy is equally large for the four tests, the proportion 

false positives will be equal for the four tests, while the Bayesian tests have a lower power when 

0.5<θ (which is the case in the experiment) and thus have less favorable ROC curves.  

Explanation result experiment III 

In experiment 3, the alternative model M1 that is used to calculate the Bayes factor and as 

prior for the HDI places more probability on higher θ values. Therefore, 𝑅𝐿𝑦 < 𝑅𝑈𝑦 for the 

Bayes factor and HDI+ROPE method. When the four tests have an equally large Ɍ𝑦, the two 

frequentist tests still yield 𝑅𝐿𝑦= 𝑅𝑈𝑦 while the two Bayesian tests (with a prior of Beta(5,1)) 

yield 𝑅𝐿𝑦< 𝑅𝑈𝑦. From this follows that when Ɍ𝑦 is equally large for the four tests, the 

proportion false positives will be equal for the four tests, while the Bayesian tests have a higher 

power when 0.5<θ (which is the case in the experiment) and therefore more favorable ROC 

curves. 

Explanation result experiment IV 

In experiment 4, the alternative model M1, used to calculate the Bayes factor and the 

HDI, places more probability on the θ values around the center (θ = 0.5). Therefore, all four tests 

yield RLy= RUy again. This means that every method can again be matched to have coinciding 

RLy‘s and RUy’s by adjusting the decision thresholds. The result is equal proportions false 

positives and true positives, resulting in equal ROC curves. 
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The only difference with the result in experiment 1 is that in this experiment the observed 

maximum proportion false alarms and maximum proportion true positives are higher than in 

experiment 1. This is the result of the alternative model M1 placing more probability on the θ’s 

around the center. This results in higher BF10’s around the center than with a uniform prior (see 

the third plot in figure 3) and therefore a higher sensitivity, resulting in more false positives and 

more true positives. For the HDI this results in smaller HDI’s and therefore a higher sensitivity 

and more false positives and more true positives as well.  

The possibility of asymmetrical rejection regions for frequentist tests 

Making the rejection region for the Bayesian and frequentist tests equal is possible when 

the tests have symmetrical rejection regions in the sense that 𝑓(𝑦 ∈ 𝑅𝐿𝑦|𝐻0) = 𝑓(𝑦 ∈ 𝑅𝑈𝑦|𝐻0). 

Then 𝑓(𝑦 ∈ Ɍ𝑦|𝐻0) can be set equal for every test what results in equal 𝑓(𝑦 ∈ Ɍ𝑦|𝐻1) and 

therefore equal 
𝑓(𝑦 ∈ Ɍ𝑦|𝐻1)

𝑓(𝑦 ∈ Ɍ𝑦|𝐻0) 
. The same logic would apply to one-tailed frequentist and Bayesian 

tests: when 𝑅𝐿𝑦 = ∅ or 𝑅𝑈𝑦 =  ∅ for both approaches, their decision thresholds can again be set 

such that the Ɍ𝑦 of the four tests align perfectly, yielding equal AUC’s again.  

 In frequentist methods, traditionally, two-sided tests have symmetric rejection regions 

while for the BF and HDI+ROPE decision rule, in theory, rejection regions can be set however 

the researcher wants. For the BF this depends on how the M1 is specified and what BFcrit is used. 

For the HDI+ROPE decision rule this depends on what prior and ROPE Is used. In experiment 2 

and 3 it became clear that when an asymmetrical prior is used (and the sample size is large 

enough), the Bayesian methods do not have symmetric rejection regions and therefore different 

ROC curves than the frequentist (symmetrical) methods. 

However, as Nosanchuck pointed out in 1978, nothing in theory prohibits asymmetric 

rejection regions for frequentist methods. He suggested a compromise between a one- and two-
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tailed test in order to increase power relative to a two-tailed test, without excluding the 

possibility of finding unexpected effects. Rice & Gaines (1994) agreed that there is no 

compelling reason to consider either one- or two-tailed tests and offered guidelines to find a p-

value for a “directed test (Pdir)” by partitioning the Type-I error rate (α) into two segments α=γ+δ 

where 𝛾 ≥ 𝛿 and 𝛾 is associated with the “rejection region” in the anticipated direction. The 

critical values for the directed frequentist test are easily found once γ/α is specified. When γ/α of 

a frequentist test equals 𝑓(𝑦 ∈ 𝑅𝑈𝑦|𝐻0)/𝑓(𝑦 ∈ Ɍ𝑦|𝐻1) or 𝑓(𝑦 ∈ 𝐿𝑈𝑦|𝐻0)/𝑓(𝑦 ∈ Ɍ𝑦|𝐻1) 

(depending on what the anticipated direction of the effect is) of a Bayesian test, their decision 

thresholds can again be set to yield equal 
𝑓(𝑦 ∈ Ɍ𝑦|𝐻1)

𝑓(𝑦 ∈ Ɍ𝑦|𝐻0) 
. Although not tested in the simulation study, 

based on this rationale, one would expect that, even for asymmetrical prior probability 

distributions, in the example of a binomial experiment with a predetermined N, it is always 

possible to convert the two Bayesian tests to frequentist test that yield equal proportions false 

alarms and equal proportions true positives and vice versa. 

Figure 7 shows an example of the matching of a BF test where M1 is specified as a non-

symmetric prior distribution Beta(2,1) with a p-value test with α=0.05 and vice versa. This is 

possible when α is not necessarily symmetrically distributed and the Bayes factor can have two 

different decision thresholds depending on the direction of the result. 
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Figure 5 The Ry (the yellow shaded area) of the BF matched to the Ry of a two-sided p-value with α 

=0.05 (left) and the Ry of a “directed” p-value matched to the Ry of a BF>3 test with M1 (alt hypothesis) 

specified as a non-symmetric prior distribution beta(2,1) (right).  
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Discussion 

Frequentist and Bayesian schools disagree with each other on how to construct statistical 

measures of evidence (Silva, 2018). Frequentists are concentrated on controlling pre-

experimental probabilities of making wrong decisions (controlling the Type I error probability). 

Their decision rules are constructed based on the likelihood of obtaining the test results given 

that H0 is true and how often one would obtain a false positive given that decision rule. For 

Bayesians, the Type I error probability does not play a central role in the construction of a 

decision rule. Instead, they are interested in which hypothesis or which θ values are more 

probable after observing the data. Their goal is to construct decision rules that rely on the post-

experimental plausibility of both H0 and H1. The ROPE approaches can be good alternatives 

when the researcher can specify what effect size would be meaningful and what effect sizes 

would not be of interest.  

The results of the simulation study show that the ROC curves of the p-value and Bayes 

factor coincide when M1 is specified as a symmetric probability distribution. When this is not the 

case, the decision qualities of the Bayes factor are as good as the model M1 that is used to 

calculate the Bayes factor. Better decision qualities are obtained when M1 places more credibility 

on the θ in the same direction as the true θ; worse decision qualities are obtained when M1 places 

more credibility on the θ in the opposite direction as the true θ. 

The results show that the trade-off between the false positive rate and true positive rate of 

the CI+ROPE approach is always on the ROC curve of the p-value, and the trade-off between the 

false positive rate and true positive rate of the HDI+ROPE approach is always on the ROC curve 

of the BF. This suggests that the same applies for the ROPE approaches: better decision qualities 

are obtained for the HDI+ROPE approach when the prior distribution places more credibility on 
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the θ in the same direction as the true θ and worse decision qualities are obtained when the prior 

distribution places more credibility on the θ in the opposite direction as the true θ.  

Despite that the Bayesian and frequentist schools are based on different rationales, the 

results of the simulation study suggest that aligning the rejection region for Bayesian and 

frequentist tests is possible when the tests have symmetrical rejection regions in the sense that 

𝑓(𝑦 ∈ 𝑅𝐿𝑦|𝐻0) = 𝑓(𝑦 ∈ 𝑅𝑈𝑦|𝐻0). Then 𝑓(𝑦 ∈ Ɍ𝑦|𝐻0) can be set equal for the two tests, which 

results in equal 𝑓(𝑦 ∈ Ɍ𝑦|𝐻1) and therefore equal ROC curves and equal decision qualities.  

 The ideas of Rice & Gaines (1994), who proposed asymmetrical rejection regions for 

frequentist tests in order to yield optimal power while still being able to find unexpected results, 

as discussed “The possibility of asymmetrical rejection ratio’s for frequentist tests”, provides a 

bridge between Bayesian tests with asymmetrical rejection regions because of asymmetric prior 

distributions and frequentist test. This fits with the theory of Bayarri et al. (2016), who argues 

that a prior distribution can simply be interpreted by a frequentist as a “weight function” for 

power computation. For M0, this weight function is chosen to be a point mass at θ=0.5. For M1, 

the prior distribution for the effect size under H1 can be interpreted as a device to optimally 

power the procedure in the desired effect sizes. 

It has been demonstrated in literature that frequentist and Bayesian schools are not in 

logical conflict. Instead, what separates Bayesian and frequentist approaches is how the rejection 

region Ɍ𝑦 is chosen (Pericchi & Pereira, 2016; Silva, 2018). Bayarri et al. (2016) concludes that 

the use of the Bayes factor is actually a fully frequentist procedure. Silva (2018) generalizes the 

equivalence between Bayes factors and frequentist tests to all Bayesian tests. In his paper he 

demonstrates, through analytical arguments, the existence of a perfect equivalence between 

Bayesian and frequentist methods for testing when based on the same joint probability 
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distribution. According to Silva (2018), for each Bayesian test, one can always design an 

equivalent frequentist test, and conversely, for each frequentist test, one can always design an 

equivalent Bayesian test. This is perfectly in line with the proposed explanation of the results in 

this study.  

The simulation study in this research has its limitations; for the HDI+ROPE and 

CI+ROPE approaches, the decision thresholds were not varied; hence their ROC curves were not 

obtained. We can only suspect that their ROC curves equal their point hypothesis tests 

counterpart because their false positives and true positive trade-off is always on the ROC curves 

corresponding to their corresponding point hypothesis test. Secondly, only symmetric α’s were 

used to calculate the frequentist tests, therefore the simulation study does not provide evidence 

for the proposed theory that Bayesian tests with asymmetrical priors can always be matched to 

frequentist tests with asymmetrical α’s. Thirdly, obviously, the simulation study was limited to 

binomial experiments with a predetermined N and four different statistical methods. Therefore, 

based on the results of the simulation study alone no inferences can be made about data from 

different distributions and different statistical methods. However, the results combined with the 

proposed framework of ordering the sample space, the possibility of using asymmetrical 

significance tails in the frequentists methods and the discussed literature about the equivalence of 

Bayesian and frequentist methods provide support for the findings of Silva (2018); it is always 

possible to convert a Bayesian test to a frequentist test that yields equal proportions false 

positives and equal proportions true positives and vice versa. When the rejection regions of the 

four tests coincide by adjusting the decision thresholds, they will always make the same 

decisions and therefore yield equal decision qualities.  
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Despite the implicit correspondence between the frequentist and Bayesian approaches, 

they do not provide the same information. The frequentist methods are based on the probability 

of obtaining a false positive (making conclusions based on the probability of obtaining the 

observed or more extreme data under the null hypothesis), while a hypothesis test based on the 

Bayes factor supports the hypothesis (i.e. model) under which the observed data are most likely 

and the HDI+ROPE test whether the 95% most credible values (with the prior taken into 

account) lie outside the specified ROPE.  

In opposition to the common belief that a statistical test criterion should be based on just 

one of the two fashions, the results of this thesis suggest that hypothesis testing has not to be 

based on just one of these concerns but can use both criteria by calibrating the specific 

frequentist test into a Bayesian test (or vice versa) and report both. According to Silva (2018), 

control of Type I error probabilities and usage of posterior distributions can be utilized as 

complementary statistical devices. But because Bayesians and frequentist usually neglect the 

goals of each other, they can yield discordant results.  

As suggested by Silva (2018), it would be better practice to combine both procedures by 

calibrating Bayesian decision rules into frequentist decision rules (or vice versa) can ensure 

effective control of Type I error probabilities while simultaneously take advantage of the 

Bayesian benefits, being: evaluating the strength of the evidence in the obtained data rather than 

also taking into account the more extreme (but not observed) values; being able to find support 

for the null hypothesis and providing the researcher with a tool to directly take previous findings 

into account (when desired) to provide cumulative evidence (Bayarri et al., 2016; Ortega & 

Navarrete, 2017). Both points of view are important and they can simultaneously be used in 

research. Therefore, in general, there is no point in arguing about what tests or rationale is 
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superior as both points of view provide useful additional information. In other words: they are 

complementary.  

Future research should confirm whether it is indeed possible to construct coinciding 

rejection regions and therefore equal decision qualities for all frequentist and Bayesian methods 

and different kinds of data. Furthermore, it would be beneficial if future research would focus 

more on the correspondence of the Bayesian and frequentist methods, especially focusing on 

how the different approaches can strengthen each other, instead of getting lost in the 

philosophical differences. Despite some attempts in research, there is no simple (perfect) general 

calibration rule yet to convert Bayes factors from p-values and vice versa (Jeon & De Boeck, 

2017). This is complicated because as we have seen, Bayes factor is a comparative method where 

the sample size plays a role in interaction with the effect size, while the proportion false positives 

of frequentist measures are independent of the sample size.  

I contend that researchers would be less reluctant to perform and report both methods if 

the calibration between specific frequentist and Bayesian tests would be made easier. I aim to 

contribute to this process with a function in R called “alfa_to_bfcrit” (see Appendix 7) that 

calculates which critical Bayes factor would yield equal false alarm rates and equal power as a 

frequentist test that uses the specified alfa.  
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Appendix 1: Effect sizes plotted separately 

Experiment 1: Beta(1,1) 

 

Experiment 2: Beta(1,5) 
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Experiment 3: Beta(5,1) 

 

Experiment 4: Beta(5,5) 
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Appendix 2: Results follow-up study 
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Appendix 3: Deriving the Bayes rule 

Deriving the Bayes rule  

The formula of conditional probability is: 

1. 𝒑(𝒚|𝒙) =
𝒑(𝒚,𝒙)

𝒑(𝒙)
 

(Kruschke, 2015). In words, the definition simply says that the probability of y given x is the 

probability that they happen together relative to the probability that x happens at all. By 

multiplying both sides of the formula by p(x) we get: 

2. 𝒑(𝒚|𝒙)𝒑(𝒙) = 𝒑(𝒚, 𝒙) 

We can do the analogous manipulation starting with   𝑝(𝑥|𝑦) =
𝑝(𝑦,𝑥)

𝑝(𝑦)
 . We multiply both sides of 

the formula by p(y) to get: 

3. 𝒑(𝒙|𝒚)𝒑(𝒚) = 𝒑(𝒚, 𝒙) 

Formula 2 and formula 3 have both 𝑝(𝑦, 𝑥) on one side of the equation, this proves that 

𝑝(𝑥|𝑦)𝑝(𝑦) = 𝑝(𝑦|𝑥)𝑝(𝑥). Divide both sides of the formula by 𝑝(𝑥) to get: 

4. 𝒑(𝒚|𝒙) =
𝒑(𝒙|𝒚)𝒑(𝒚)

𝒑(𝒙)
 

We can re-write the denominator in terms of 𝑝(𝑥|𝑦) by making use of the next formula: 

𝑝(𝑥) =  ∑ 𝑝(𝑥, 𝑦)
𝑦

  

In words, it says that the probability of getting 𝑥 is the sum of all 𝑥, 𝑦 arching over all possible 

𝑦’s. We also know that  𝑝(𝑥, 𝑦) =  𝑝(𝑥|𝑦)𝑝(𝑦) because 𝑝(𝑥|𝑦) = =
𝒑(𝒙,𝒚)

𝒑(𝒚)
. Combining those 

equitation’s yields 𝑝(𝑥) =  ∑ 𝑝(𝑥, 𝑦)𝑦 = ∑ 𝑝(𝑥|𝑦)𝑝(𝑦)𝑦 . Substituting this into the denominator 

of formula 4 we get: 
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5. 𝒑(𝒚|𝒙) =
𝒑(𝒙|𝒚)𝒑(𝒚)

∑ 𝒑(𝒙|𝒚)𝒑(𝒚)𝒚
 

Both the equations 4 and 5 are called ‘The Bayes Rule’. The input in the equations are the 

factors likelihood, prior and evidence: 

𝑝(𝑦|𝑥) = 𝑝(𝑥|𝑦)
𝑝(𝑦)

𝑝(𝑥)
    is equal to 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑∗𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 . 
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Appendix 4: Multiplying a beta distribution with the likelihood function 

Formally, a beta distribution has two parameters, called a and b, and the density itself is 

defined as: 

𝑝(𝜃|𝑎, 𝑏) = 𝐵𝑒𝑡𝑎(𝜃; 𝑎, 𝑏) =  𝜃(𝑎−1) (1 − 𝜃)𝑏−1/𝐵(𝑎, 𝑏) (8) 

Where B(a,b) is a normalizing constant that ensures that the area under the beta integrates 

to 1.0 (Kruschke, 2010). Substituting the likelihood function (formula 7) and the beta prior 

(formula 8) distribution into the Bayes’ rule (formula 4) yields 

𝑝(𝜃|𝑦, 𝑁) =
𝑝(𝑦|𝑁, 𝜃)𝑝(𝜃)

𝑝(𝑦, 𝑁)
 

𝑝(𝜃|𝑦, 𝑁) =  
𝜃𝑦  (1 − 𝜃)𝑛−𝑦 𝜃(𝑎−1) (1 − 𝜃)𝑏−1

[𝐵(𝑎, 𝑏)𝑝(𝑦, 𝑁)]
 

𝑝(𝜃|𝑦, 𝑁)= 
𝜃((𝑦+𝑎)−1) (1−𝜃)((𝑛−𝑦+𝑏)−1)

𝐵(𝑦+𝑎,𝑛−𝑦+𝑏)
 

(9) 

(Kruschke, 2010). Where the denominator is again just the normalizing factor for the 

corresponding beta distribution. In words, formula 9 says that, when the prior distribution is 

Beta(θ, 𝑎, 𝑏), and the data have y heads in N flips, then the posterior distribution is Beta(θ; y + a, 

n-y + b). This makes using Beta(a,b) prior when we have binomial observations particularly easy 

because we do not have to do any integration to find the posterior.  
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Appendix 5: Cohens’ h 

Intuitively, one might think that simply taking the difference between proportions would 

be an appropriate measure of effect size. However, according to Cohen (1977), equal differences 

in proportions along the distribution from 0 to 1 are not necessarily equally detectable. But 

subjecting the two proportions to an arcsine transformation before taking the difference solves 

this problem; the equal differences between arcsine transformations are equally detectable 

(Cohen, 1988). This effect size measure is called Cohen’s h: 

𝐶𝑜ℎ𝑒𝑛′𝑠 ℎ =  2 arcsin√𝑃1 −  2 arcsin√𝑃2 

According to Cohen, a Cohen’s h = .20 corresponds to a small effect, Cohen’s h = .50 to 

a medium effect and Cohen’s h = .80 to a large effect.  
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Appendix 6: R code Experiments 

# Clear all 

graphics.off() 

rm(list=ls(all=TRUE)) 

setwd("~/R/win-library/3.4") 

 

#------------------------------------------------------------------------------

------------------------- 

#                       Functions needed: 

#R editor RSTUDIO 

#DBDA2Eprograms.zip 

(https://sites.google.com/site/doingbayesiandataanalysis/software-installation) 

#functie 'HDIofICDF.R 

(BRON:http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/Programs/) 

source("./HDIofICDF.R") #benodigde function 'HDIofICDF.R' oproepen 

#install.packages("gtools", dependencies = TRUE) 

library(gtools) 

#install.packages("stargazer", dependencies = TRUE) 

library(stargazer) 

#install.packages("stats", dependencies = TRUE) 

library(stats) 

#install.packages("Hmisc", dependencies = TRUE) #CI uitrekenen 

library(Hmisc) 

# -----------------------------------------------------------------------------

------------------------- 

#                       References 

#I copy-pasted the R-code to calculate HDI-interval, p-value and Bayes Factor 

from: 

  #Solutions to Exercises in Doing Bayesian Data Analysis 2nd Ed. by Kruschke © 

2015.  

    #Retrieved from: 

https://sites.google.com/site/doingbayesiandataanalysis/exercises  blz. 102 - 103 

 

#Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary 

Statistics Tables. R package version 5.2.1. https://CRAN.R-

project.org/package=stargazer  

# -----------------------------------------------------------------------------

-------------------------  

 

#******************************************************************************

************************** 

#                       Set 'simple' parameters  

nullTheta = 0.5 # null hypothesis 

Nsamples = 1000 #total samples for every condition (as much as possible) 

aPrior=1 #  

bPrior=1 #  

 

#                       Set changing parameters 

vecalfaPvalue = as.numeric(c(0.05, 0.025, 0.02, 0.015, 0.01, 0.005, 0.001, 

0.0005, 0.0002, 0.0001))#critical p-value/alfa (when do you decide there's an effect?) 

vecSamplesize= as.numeric(c(20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 

300, 400))#total flips in every sample / samplesize 

vecCohensH = as.numeric(c(0, 0.2, 0.3, 0.4, 0.5)) #effectsizes 

vecBFkrit = as.numeric(c(1.5, 2, 3, 4, 5, 6, 7, 8, 10, 15, 30, 50, 80, 

100))#critical Bayes Factor (when do you decide there's an effect?) 

 

#                       Do you want plots & documents and/or save your 

workspace? 

Plots = "off" #set "on" or "off" 

Documents = "off" #set "on" or "off" 

saveworkspace = "on" #save the workspace? 
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name = "ExpX_1000000_aPrirXbpriorX" #what should be the name of the 

savedworkspace (in case you want to save it) 

 

#******************************************************************************

************************** 

 

########################start 

experiment################################################################## 

###############################################################################

########################### 

# -----------------------------------------------------------------------------

-------------------------  

#                       Calculate ROPE & HDIwidth 

# -----------------------------------------------------------------------------

-------------------------  

 

# Calculate end-points of ROPE 

hmaxROPE= 0.1 # we accept a deviation from the nullTheta with a maximum of 

Cohens h = 0.1 (0.5* a small effect) as still equivalent to our nulltheta 

ropemin = (-sin(0.5*hmaxROPE-asin(sqrt(nullTheta))))^2 #what is the lower 

threshold? 

ropemax = (-sin(0.5*hmaxROPE+asin(sqrt(nullTheta))))^2 #what is the upper 

threshold? 

 

# -----------------------------------------------------------------------------

-------------------------  

#                       Make (lists with) matrices to save the data from the 

experiment 

# -----------------------------------------------------------------------------

-------------------------  

###############################################################################

######################### 

#Make vectors with 

names################################################################################ 

 

#The amount of different testing methods depends on how many different 

'critical BFs' there are 

#This for-loop creates appropiate names for the matrices we'll use 

NamevecBF = matrix(NA, ncol=length(vecBFkrit)) #make a vector with as many 

places as there are inputs in vecBFkrit 

for (i in 1:length(vecBFkrit)) 

{  NumberBF = as.character(vecBFkrit[i]) #put the critical BF in the name (bv 

"3") 

NamevecBF[i]= paste0("BF",NumberBF)} #combine "BF" with the number & save this 

in NamevecBF 

 

 

#The amount of different testing methods depends on how many different 'alfa's 

there are 

#This for-loop creates appropiate names for the matrices we'll use 

NamevecPvalue = matrix(NA, ncol=length(vecalfaPvalue)) #make a vector with as 

many places as there are inputs in vecBFkrit 

for (i in 1:length(vecalfaPvalue)) 

{  NumberBF = as.character(vecalfaPvalue[i]) #put the critical BF in the name 

(bv "3") 

NamevecPvalue[i]= paste("p-value",NumberBF)} #combine "BF" with the number & 

save this in NamevecBF 

 

#Make also a vector with names for the methods that depend on equivalence 

NamevecEq=c("HDI&ROPE", "EqCI") #  

 

# make vector with "Samplesize = x" 

Flipnames = matrix(NA, nrow=1, ncol=length(vecSamplesize)) 
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for (f in 1:length(vecSamplesize)) 

{number = as.character(vecSamplesize[f]) 

Flipnames[f] = paste0("Samplesize =", number)} 

 

# make vector with "CohensH = x" 

CohensHnames = matrix(NA, nrow=1, ncol=length(vecCohensH)) 

for (f in 1:length(vecCohensH)) 

{number = as.character(vecCohensH[f]) 

CohensHnames[f] = paste0("CohensH =", number)} 

 

###############################################################################

###################################### 

# Make a list with matrices for the different critical Bayes Factor to save 

their proportion correct decision (Power) 

 

BFmatrix = matrix(NA,nrow=length(vecSamplesize),ncol=(length(vecCohensH)-

1))#design of every matrix 

rep=length(vecBFkrit) #the amount of matrices needed 

BFmatricesPow = list() #make a list called 'BFmatrices' to store the different 

matrices 

for(i in 1:rep){ 

  newmatrix = replicate(1,BFmatrix)#copy the BF matrix 

  rownames(newmatrix) = paste0(("Samplesize="),c(vecSamplesize)) 

  colnames(newmatrix) = paste0("CohensH=", 

c(vecCohensH[2:(length(vecCohensH))])) 

  BFmatricesPow[[(NamevecBF[i])]] = newmatrix} #give the BF matrix a name, 

pulled from the vector with names 

 

###############################################################################

###################################### 

# Make a list with matrices for the different critical p-values (alfa's) to 

save their proportion correct decision (Power) 

 

Pvaluematrix = matrix(NA,nrow=length(vecSamplesize),ncol=(length(vecCohensH)-

1))#design of every matrix 

rep=length(vecalfaPvalue) #the amount of matrices needed 

PvaluematricesPow = list() #make a list called 'PvaluematricesPow' to store the 

different matrices 

for(i in 1:rep){ 

  newmatrix = replicate(1,Pvaluematrix)#copy the Pvaluematrix matrix 

  rownames(newmatrix) = paste0(("Samplesize="),c(vecSamplesize)) 

  colnames(newmatrix) = paste0("CohensH=", 

c(vecCohensH[2:(length(vecCohensH))])) 

  PvaluematricesPow[[(NamevecPvalue[i])]] = newmatrix} #give the BF matrix a 

name, pulled from the vector with names 

 

###############################################################################

###################################### 

#Make a list with matrices to save the proportion correct decision for the 

other methods############################# 

 

EqtestmatrixPow = 

matrix(NA,nrow=length(vecSamplesize) ,ncol=length(vecCohensH)-1) #design of every 

matrix 

EqtestmatricesPow = list() #make a list is called 'EqtestmatricesPow' to store 

the different matrices 

for(i in 1:length(NamevecEq)){ 

  newmatrix = replicate(1,EqtestmatrixPow) #replicate RestmatriceFA to get more 

matrices with the same size 

  rownames(newmatrix) = c(Flipnames) 

  colnames(newmatrix) = c(CohensHnames[2:length(CohensHnames)]) 

  EqtestmatricesPow[[NamevecEq[i]]] = newmatrix} #give the new matrix an 

appropiate name 
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###############################################################################

######################################## 

#Make matrix to store the False alarm rates for the different methods 

################################################# 

 

FAmatrix = 

matrix(NA,nrow=(length(vecalfaPvalue)+length(vecBFkrit)+length(NamevecEq)),ncol=(lengt

h(vecSamplesize))) #design matrix 

rownames(FAmatrix) = c(NamevecPvalue,NamevecBF, NamevecEq)  

colnames(FAmatrix) = c(Flipnames) 

 

###############################################################################

######################################## 

# Make matrices to save data temporarily (they will be overwritten in every 

Samplesize & BF loop) ##################### 

 

matValues = matrix(NA,nrow=Nsamples,ncol=7) #Matrix to save the calculated 

values 

colnames(matValues) <- c('prop. Head', 'p-value', 'BF', 'HDIleft', 'HDIright', 

'CIleft', 'CIright') #column names 

 

decisionmatrix = matrix(NA,nrow=Nsamples,ncol=(1+ 

(length(vecalfaPvalue))+(length(vecBFkrit))+(length(NamevecEq)))) #Matrix to save the 

decision for every method, based on their values and their 'critical value' 

colnames(decisionmatrix) <- c('prop. Head', c(NamevecPvalue), c(NamevecBF), 

c(NamevecEq)) #column names 

 

# -----------------------------------------------------------------------------

-------------------------  

#                       Start loops 

# -----------------------------------------------------------------------------

-------------------------  

 

#Start big loop 1: different samplesizes (number of flips per sample) 

for (i in 1:length(vecSamplesize)) { 

  Samplesize = vecSamplesize[i] 

   

  #Make matrix to store the sampling data (0's and 1's) 

  matFlips=matrix(NA,nrow=Nsamples ,ncol=Samplesize)#matrix to store the data 

from sampling (0 of 1) 

  colnames(matFlips) <- c(1:Samplesize) 

   

  #Start big loop 2: different effectsizes (CohensH) 

  for (j in 1:length(vecCohensH)) { 

    CohensH = vecCohensH[j] 

     

    # Calculate theta, which depends on CohensH 

    if (CohensH == 0) {theta = 0.5} 

    else {theta = (-sin(0.5*CohensH+asin(sqrt(nullTheta))))^2 }#Calculate Theta 

depending on CohensH 

    

#&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&& 

    

    #                       Start samplingloop 

    #Generate random sequence of flips and save this in the samplingmatrix: 

    for ( l in 1:Nsamples) 

    {matFlips[l,]= sample( c(0,1) , size=Samplesize , replace=TRUE , prob=c(1-

theta,theta) ) 

     

    #--------------------------------------------------------------------------

----------------------------  
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    #             Calculate values & save in matValues 

    # -------------------------------------------------------------------------

-----------------------------  

     

    #Col1 matValues: proportion 'heads' 

    z = sum(matFlips[l,]) #sum 1's in every sample 

    prop= z / Samplesize #calculate the proportion of heads 

    matValues[l,1]=prop #save in matValues 

         

    #Col2 matValues: calculate p-value  

    plow = pbinom( q=z , size=Samplesize , prob=nullTheta )  

    phi = 1.0-pbinom( q=z-1 , size=Samplesize , prob=nullTheta ) 

    pvalue = 2*min(c(plow,phi))  

     

    matValues[l,2]=pvalue #save in matValues 

     

    #COl3 matValues: calculate the Bayes Factor 

    bf = ( exp( lbeta(aPrior+z,bPrior+Samplesize-z) - lbeta(aPrior,bPrior) ) / 

( nullTheta^z * (1.0-nullTheta)^(Samplesize-z) ) ) #Calculate BayesFactor (I copy 

pasted this part), eq.12.3 blz. 

    matValues[l,3]=bf #save in matrix 

     

    #Col4 & 5 matValues: calculate the endpoints of the HDI (I copy pasted this 

part) 

    hdi = matrix(NA,nrow=1,ncol=2) #make a vector with 2 empty places 

    hdi= HDIofICDF( qbeta , shape1=aPrior+z , shape2=bPrior+Samplesize-z )# 

calculate endpoints (left & right) 

    matValues[l,4]= hdi [1] #save left endpoint 

    matValues[l,5] = hdi [2] #save right endpoint 

     

    #Col6 & 7 matValues: EqCI confidence interval 

    CI = binconf(z, Samplesize, alpha=0.05, 

            method="wilson", #Following Agresti and Coull, the Wilson interval 

is to be preferred and so is the default. 

            include.x=FALSE, include.n=FALSE, return.df=FALSE) 

       

    matValues[l,6] = CI[2] #lower bound CI 

    matValues[l,7] = CI[3] #upper bound CI 

     

    # -------------------------------------------------------------------------

-----------------------------  

    #             Make a decision based on the values in matValues & save in 

decisionmatrix 

    # -------------------------------------------------------------------------

-----------------------------  

     

    #Col1 decisionmatrix: proportion heads 

    decisionmatrix[l,1]=prop 

     

    #Col 2:(length:vecalfaPvalue) make decisions based on different critical 

Bayes Factors 

    for (k in 1:length(vecalfaPvalue)) { #Loop for different critical values as 

inputed in vecalfaPvalue 

      alfa = vecalfaPvalue[k] 

       

      if ( pvalue < alfa ) {decisionmatrix[l,(1+k)] = 'signif'} #  reject 

0hypothesis: significant result 

      else if (pvalue > alfa) {decisionmatrix[l,(1+k)] = 'nietsig'}} # don't 

reject 0hypothesis: nonsignificant result 

     

    #Next columns: make decisions based on different critical Bayes Factors 

    for (k in 1:length(vecBFkrit)) { #Loop for different critical values as 

inputed in vecBFkrit 
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      criticalBF = vecBFkrit[k] 

       

      #Col 3 decisionmatrix: make a decision based on the BF 

    if (bf < 1/criticalBF ) {decisionmatrix[l,(1+(length(vecalfaPvalue))+k)] = 

'nul'} #  accept nullhypothesis 

      else if (bf > criticalBF) 

{decisionmatrix[l,(1+(length(vecalfaPvalue))+k)] = 'alt'} # accept 

alternativehypothesis 

      else if (bf > 1/criticalBF & bf < criticalBF) 

{decisionmatrix[l,(1+(length(vecalfaPvalue))+k)] = 'geen'}} #no decision 

     

    #Next column in decisionmatrix: take a decision based on HDI& ROPE  

    if ((hdi[1] >= ropemin) & (hdi[2] <= ropemax)) 

{decisionmatrix[l,(1+(length(vecalfaPvalue))+(length(vecBFkrit))+1)] = 'nul'} #HDI is 

completely inside the rope, accept nullhypothesis 

    else if ((hdi[2] < ropemin | hdi[1] > ropemax)) 

{decisionmatrix[l,(1+(length(vecalfaPvalue))+(length(vecBFkrit))+1)] = 'alt'}#HDI is 

completely outside the rope, accept alternative hypothesis  

    else {decisionmatrix[l,(1+(length(vecalfaPvalue))+(length(vecBFkrit))+1)] = 

'geen'} #HDI is partly inside, and partly outside, we don't make a decision yet 

     

    #Next column decisionmatrix: decision EqCI 

    if ((CI[2] >= ropemin) & (CI[3] <= ropemax)) {EqCI = "null"} # accept 

nulhypothesis 

      else if ((CI[3] < ropemin | CI[2] > ropemax)) {EqCI = "alt"} # accept 

alternative hyphothesis 

        else {EqCI = "no decision"} #we can not (yet) conclude that the true 

theta differs significantly from the values in the "ROPE' 

     

    decisionmatrix [l,(1+(length(vecalfaPvalue))+(length(vecBFkrit))+2)] = EqCI 

     

    } #end sampling loop  

    #--------------------------------------------------------------------------

--------------------------------------------   

    #                     Start data Analysis 

    #--------------------------------------------------------------------------

--------------------------------------------   

    

######################################################################################

################################# 

    ##################### Make False Alarm matrix 

######################################################################### 

     

    if (theta == nullTheta) { #When the 0hypothesis is true 

       

      for(z in 1:(length(vecalfaPvalue))){ # how many different alfa's are 

tested depends on the input, therefore we need a for-loop again 

        SumPvalue = sum(decisionmatrix[,(1+z)] == 'signif') 

        propFAPvalue = (SumPvalue/Nsamples) 

        FAmatrix [z,i]=propFAPvalue} 

       

      for(z in 1:(length(vecBFkrit))){ # how many different critical BF are 

tested depends on the input, therefore we need a for-loop again 

        SumBF = sum(decisionmatrix[,(1+(length(vecalfaPvalue))+z)] == 'alt') 

        propFABF = (SumBF/Nsamples) 

        FAmatrix [((length(vecalfaPvalue))+z),i]=propFABF} 

       

      HDIROPEFA = 

sum(decisionmatrix[,(1+(length(vecalfaPvalue))+(length(vecBFkrit))+1)] == 'alt');# 

Count how many times HDI&ROPE indicated proof for the alternative hypothesis when 

there was no effect 

      propFAHDIROPE = (HDIROPEFA / Nsamples);# calculate proportion false 

alarms 
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      FAmatrix [((length(vecalfaPvalue))+(length(vecBFkrit))+1),i] = 

propFAHDIROPE 

       

      EqCIFA = 

sum(decisionmatrix[,(1+(length(vecalfaPvalue))+(length(vecBFkrit))+2)] == 'alt'); 

      propFAEqCI = (EqCIFA / Nsamples); 

      FAmatrix [((length(vecalfaPvalue))+(length(vecBFkrit))+2),i] = propFAEqCI 

     

    }else{ 

       

    

######################################################################################

################################# 

    ##################### Make Power matrices 

############################################################################# 

       

      for(z in 1:(length(vecalfaPvalue))){ # how many different alfa's are 

tested depends on the input, therefore we need a for-loop again 

        SumPvalue = sum(decisionmatrix[,(1+z)] == 'signif') 

        proportionFAPvalue = (SumPvalue/Nsamples) 

        PvaluematricesPow[[z]][i,(j-1),1]=proportionFAPvalue} 

       

      # i= place in vecSamplesize, for every Samplesize we test, the proportion 

FA is stored in the i'th column 

      # j= place in vecCohensH 

      # j-1 = CohensH > 0  (there's an effect). In the 'Power matrices' we only 

want the samples where there was actually an effect 

      # therefore, every CohensH (except CohensH = 0) is stored in the j-1'th 

column 

      # Therefore we store the data in the [i,(j-1),1]'th place 

       

      for (o in 1:length(vecBFkrit)) { # how many different critical BF are 

tested depends on the input, therefore we need a for-loop again 

        CorrectRejectionsBF = sum(decisionmatrix[,(1+length(vecalfaPvalue)+o)] 

== 'alt'); 

        PowerBF = (CorrectRejectionsBF / Nsamples); 

        BFmatricesPow[[o]][i,(j-1),1]=PowerBF} 

       

      CorrectRejectionsHDIROPE = 

sum(decisionmatrix[,(1+(length(vecalfaPvalue))+(length(vecBFkrit))+1)] == 'alt'); 

      PowerHDIROPE = (CorrectRejectionsHDIROPE / Nsamples); 

      EqtestmatricesPow$`HDI&ROPE`[i,(j-1),1]=PowerHDIROPE 

       

      CorrectRejectionsEqCI = 

sum(decisionmatrix[,(1+(length(vecalfaPvalue))+(length(vecBFkrit))+2)] == 'alt'); 

      PowerEqCI = (CorrectRejectionsEqCI / Nsamples); 

      EqtestmatricesPow$EqCI[i,(j-1),1]=PowerEqCI 

       

    } #end IF-statement 

  } #End loop CohensH (j) 

} #End loop Samplesize (i) 

 

#------------------------------------------------------------------------------

----------------------------------------   

#                     Make plots & docs 

#------------------------------------------------------------------------------

----------------------------------------   

if (Plots == "on") { 

 

vecSamplesize <- as.numeric(vecSamplesize) # convert factor to numeric  

NlinesPvalueBF <- (length(vecalfaPvalue)+length(vecBFkrit)) # count how many 

lines are needed for the interactionplot (depends on input vecBFkrit) 
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###############################################################################

######################################## 

##################### Plot 1: Proportion FA p-value vs 

BF########################################################################### 

png(paste0("False Alarms_p-value.v.s.BF_Nsamples=",Nsamples,".png"), 1500, 

1000) #save plot as png image 

 

# get the range for the x and y axis  

xrange <- range(vecSamplesize)  

yrange <- c(0, 0.06)  

 

# set up the plot  

plot(xrange, yrange, type="n", xlab="Samplesize", 

     ylab="Proportion FA", cex.lab=2)  

colours <- rainbow(NlinesPvalueBF) #choose as many colours as lines in plot   

plotchar <- seq(18,18+NlinesPvalueBF,1) 

 

# add lines  

for (j in 1:NlinesPvalueBF) 

{lines(vecSamplesize, (as.vector(FAmatrix[(j),])), type = "o", lwd=2, 

       lty=1 , col=colours[j], pch=plotchar[1])} 

 

# add a title 

title("Proportion FA p-value & Bayes Factor", cex.main = 2.5) 

 

# add a legend  

legend(xrange[1], yrange[2], c(NamevecPvalue,NamevecBF), cex=1.5, col=colours, 

       pch=plotchar[1], lty=1) 

 

# Save the file. 

dev.off() 

 

###############################################################################

######################################## 

##################### Plot 2: Proportion FA Eq. 

tests########################################################################### 

png(paste0("False Alarms_Eq.Test_Nsamples=",Nsamples,".png"), 1500, 1000) #save 

plot as png image 

NlinesEq= length(NamevecEq) 

 

# get the range for the x and y axis  

xrange <- range(vecSamplesize)  

yrange <- c(0, 0.03)  

 

# set up the plot  

plot(xrange, yrange, type="n", xlab="Samplesize", 

     ylab="Proportion FA", cex.lab=2)  

colours <- rainbow(NlinesEq) #choose as many colours as lines in plot   

plotchar <- seq(18,18+NlinesEq,1) 

 

# add lines  

for (j in 1:NlinesEq) 

{lines(vecSamplesize, 

(as.vector(FAmatrix[((length(vecalfaPvalue)+length(vecBFkrit))+j),])), type = "o", 

lwd=2, 

       lty=1 , col=colours[j], pch=plotchar[1])} 

 

# add a title 

title("Proportion FA p-value & Bayes Factor", cex.main = 2.5) 

 

# add a legend  

legend(xrange[1], yrange[2], c(NamevecEq), cex=1.5, col=colours, 

       pch=plotchar[1], lty=1) 
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# Save the file. 

dev.off() 

 

###############################################################################

##################################### 

##################### Plot 3: Power p-value vs BF 

################################################################################ 

# The amount of plots we want depends on how many different CohensH-values are 

imputed 

# Therefore we have to calculate the number of rows and collumns we put into 

'par(mfrow = c(xrow, ycol)) 

# We can calculate this with "(0.5*(length(vecCohensH)-1))". We use vecCohensH-

1 because vecCohensH[1]=0, we only want CohensH>0 in this plot 

ycol = as.integer(0.5*(length(vecCohensH))) 

xrow = as.integer(0.5*(length(vecCohensH))+0.5) #control for odd number if 

necessary 

 

# Why does +0.5 control for a odd number?  

# If we add +0.5, the rownumber doesn't change when "0.5*(length(vecCohensH))" 

is an even number (as.integer makes from (2+0.5) -> 2),  

# but when it's an odd number it does change (as.integer makes from (2.5+0.5) -

> 3).  

 

png(paste0("Power_BFvsPvalue_Nsamples=",Nsamples,".png"), (xrow*1500), 

(ycol*1500)) #save plot as png image 

 

##  Set up plotting in xrows and ycolumns, plotting along rows first. 

par( mfrow = c(xrow,ycol)) 

 

# get the range for the x and y axis  

xrange <- range(vecSamplesize)  

yrange <- c (0, 1) 

for (x in 1:(length(vecCohensH)-1)) # for-loop for making all the Power plots 

   

  # Set up plot 

{ plot(xrange, yrange, type="n", xlab="Samplesize", 

     ylab="Proportion correct", main = paste("CohensH =", vecCohensH[(1+x)]), 

cex.lab=2.5, cex.main=3)  

   

colours <- rainbow(NlinesPvalueBF)  

plotchar <- seq(18,18+NlinesPvalueBF,1) 

 

# add lines  

for (j in 1:(length(vecalfaPvalue))) #the other lines depend on the input in 

'vecalfaPvalue' 

{lines(vecSamplesize, (as.vector(PvaluematricesPow[[j]][,x,1])), type = "o", 

lwd=3, 

       lty=1, col=colours[j], pch=plotchar[1])} 

 

for (k in 1:(length(vecBFkrit))) #the other lines depend on the input in 

'vecBFkrit' 

{lines(vecSamplesize, (as.vector(BFmatricesPow[[k]][,x,1])), type = "o", lwd=3, 

       lty=1, col=colours[j+k], pch=plotchar[1])}   

 

# add a legend, only in the first plot 

if (x == 1) 

{legend(xrange[1], yrange[2], c(NamevecPvalue,NamevecBF), cex=2, col=colours, 

       pch=plotchar[1], lty=1)} 

 

} # end for-loop for making plots 

 

dev.off() # save the image 
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###############################################################################

##################################### 

##################### Plot 4: Power Eq.testin 

################################################################################ 

 

# The amount of plots we want depends on how many different CohensH-values are 

imputed 

# Therefore we have to calculate the number of rows and collumns we put into 

'par(mfrow = c(xrow, ycol)) 

# We can calculate this with "(0.5*(length(vecCohensH)-1))". We use vecCohensH-

1 because vecCohensH[1]=0, we only want CohensH>0 in this plot 

ycol = as.integer(0.5*(length(vecCohensH))) 

xrow = as.integer(0.5*(length(vecCohensH))+0.5) #control for odd number if 

necessary 

 

# Why does +0.5 control for a odd number?  

# If we add +0.5, the rownumber doesn't change when "0.5*(length(vecCohensH))" 

is an even number (as.integer makes from (2+0.5) -> 2),  

# but when it's an odd number it does change (as.integer makes from (2.5+0.5) -

> 3).  

 

png(paste0("Power_Eqtest_Nsamples=",Nsamples,".png"), (xrow*1500), (ycol*1600)) 

#save plot as png image 

 

##  Set up plotting in xrows and ycolumns, plotting along rows first. 

par( mfrow = c(xrow,ycol)) 

 

# get the range for the x and y axis  

xrange <- range(vecSamplesize)  

yrange <- c (0, 1) 

for (x in 1:(length(vecCohensH)-1)) # for-loop for making all the Power plots 

   

  # Set up plot 

{ plot(xrange, yrange, type="n", xlab="Samplesize", 

       ylab="Proportion correct", main = paste("CohensH =", vecCohensH[(1+x)]), 

cex.lab=2.5, cex.main=3)  

   

  colours <- rainbow(NlinesEq)  

  plotchar <- seq(18,18+NlinesPvalueBF,1) 

   

  # add lines  

  for (j in 1:NlinesEq) #the other lines depend on the input in 'vecalfaPvalue' 

  {lines(vecSamplesize, (as.vector(EqtestmatricesPow[[j]][,x,1])), type = "o", 

lwd=3, 

         lty=1, col=colours[j], pch=plotchar[1])} 

   

  # add a legend, only in the first plot 

  if (x == 1) 

  {legend(xrange[1], yrange[2], c(NamevecEq), cex=2, col=colours, 

          pch=plotchar[1], lty=1)} 

   

} # end for-loop for making plots 

 

dev.off() # save the image 

 

} # end if-function plot 

 

 

###################################### final matrices 

##################################################################### 

#make a list with matrices for every effectsize 
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matriceEffectsizes = 

matrix(NA,ncol=length(vecSamplesize),nrow=(2*length(vecBFkrit)+2*length(vecalfaPvalue)

))   #design of every matrix 

matricesEffectsizes = list() #make a list called 'BFmatrices' to store the 

different matrices 

for(i in 2:(length(vecCohensH))){ 

  newmatrix = replicate(1,matriceEffectsizes)#copy the BF matrix 

  rownames(newmatrix) = c(paste0(("FA"),NamevecPvalue), 

paste0(("FA"),NamevecBF), paste0(("Pow"),NamevecPvalue), paste0(("Pow"),NamevecBF)) 

  colnames(newmatrix) = Flipnames 

  matricesEffectsizes[[as.character(vecCohensH[i])]] = newmatrix #give the BF 

matrix a name, pulled from the vector with names 

} 

 

#fill big matrix 

for(i in 1:(length(vecCohensH)-1)){ #copy FAmatrix 

  

matricesEffectsizes[[i]][1:(length(vecalfaPvalue)+length(vecBFkrit)),,1]=FAmatrix[1:(l

ength(vecalfaPvalue)+length(vecBFkrit)),] 

   

  #Pow matrices 

  for(j in 1:(length(vecBFkrit))){ 

    for(k in 1:(length(vecalfaPvalue))){ 

      for(l in 1:( length(vecSamplesize))){ 

        

matricesEffectsizes[[i]][(length(vecalfaPvalue)+length(vecBFkrit))+k,l,1] = 

PvaluematricesPow[[k]][l,i,1] 

        

matricesEffectsizes[[i]][(length(vecalfaPvalue)+length(vecBFkrit)+length(vecalfaPvalue

))+j,l,1] = BFmatricesPow[[j]][l,i,1] 

      }}}} 

 

#make a matrix with the means over the four effect sizes 

meanmatriceEffectsizes = 

matrix(NA,ncol=length(vecSamplesize),nrow=(2*length(vecBFkrit)+2*length(vecalfaPvalue)

))   #design of every matrix 

rownames(meanmatriceEffectsizes) = c(paste0(("FA"),NamevecPvalue), 

paste0(("FA"),NamevecBF), paste0(("Pow"),NamevecPvalue), paste0(("Pow"),NamevecBF)) 

colnames(meanmatriceEffectsizes) = Flipnames 

for(c in 1:length(vecSamplesize)){ 

  for(r in 1:(2*length(vecBFkrit)+2*length(vecalfaPvalue))){ 

    meanmatriceEffectsizes[r,c] = 

mean(c(matricesEffectsizes[[1]][r,c,1],matricesEffectsizes[[2]][r,c,1],matricesEffects

izes[[3]][r,c,1],matricesEffectsizes[[4]][r,c,1])) 

  }}  

 

meanHDI = matrix(NA,ncol=length(vecSamplesize),nrow=1)   #design of every 

matrix 

for(c in 1:length(vecSamplesize)){ 

  meanHDI[c] = mean(EqtestmatricesPow$`HDI&ROPE`[c,,1])} 

 

meanCI = matrix(NA,ncol=length(vecSamplesize),nrow=1)   #design of every matrix 

for(c in 1:length(vecSamplesize)){ 

  meanCI[c] = mean(EqtestmatricesPow$EqCI [c,,1])} 

 

 

# save workspace 

if (saveworkspace == 'on') 

{save.image(paste0("~/R/win-library/3.4/", name, ".RData"))} #save workspace 

 

########################  Data visualization 

##################################################################################### 
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###############################################################################

######################################## 

 

#make 4 plots for 4 different effectsizes 

dev.new() 

par(mfrow =c(2,2)) 

colours =c("skyblue", rgb(1,0,0,0.6), "lightgrey", "palegreen3" 

           ,"orange","ivory4","palevioletred3")#,"","n","n","n","","n","n","n" 

 

for(i in 1:(length(vecCohensH)-1)){ 

  plot(c(0,0.12),c(0,1), yaxs= "i", type = "n", col= colours, 

       xlab = "Prop False Positives", ylab = "Prop True Positives" ,  cex.lab = 

1.4 ) 

  if (i == 1) { 

    legend("top",  

           c("p-value","BF", "HDI&ROPE","CI&ROPE"), cex = 1, inset = 0.06, 

           lty = c(1,3,NA,NA), y.intersp = 0.8,  

           pch = c(19,19,2,3), pt.bg = c("white","white" ,"white" ,"white" ), 

           x.intersp = 1, 

           pt.cex = c(1.5,1.5,1.5,1.5),  lwd=2, 

           box.lty = 0) 

     

    op = par    

    legend("topright", paste0("N=", 

                              as.character(vecSamplesize[7:1])), inset = 0.01, 

           x.intersp = 0.1, 

           y.intersp = 0.7, fill=colours[7:1], border = NA, 

           box.lty = 0) 

  } 

  for(l in 1:( length(vecSamplesize))){ 

     

    lines(matricesEffectsizes[[i]][1:length(vecalfaPvalue),l,1],  

          

matricesEffectsizes[[i]][(length(vecalfaPvalue)+length(vecBFkrit)+1):(length(vecalfaPv

alue)+length(vecBFkrit)+length(vecalfaPvalue)),l,1], 

          type="l", lty=1, col= colours[l], lwd=2) 

     

    lines(matricesEffectsizes[[i]][1:length(vecalfaPvalue),l,1],  

          

matricesEffectsizes[[i]][(length(vecalfaPvalue)+length(vecBFkrit)+1):(length(vecalfaPv

alue)+length(vecBFkrit)+length(vecalfaPvalue)),l,1], 

          type="p", pch=19, lty=1, col= colours[l], lwd=2) 

     

    

lines(matricesEffectsizes[[i]][(length(vecalfaPvalue)+1):(length(vecalfaPvalue)+length

(vecBFkrit)),l,1],  

          

matricesEffectsizes[[i]][((2*length(vecalfaPvalue)+length(vecBFkrit)+1):(2*length(vecB

Fkrit)+2*length(vecalfaPvalue))),l,1], 

          type="b", pch=19, lty=3, col= colours[l], lwd=2) 

    lines(FAmatrix[length(vecalfaPvalue)+length(vecBFkrit)+1, l], type="p", 

pch=2, cex=2, col= colours[l], 

          EqtestmatricesPow[[1]][l,i,1]) 

    lines(FAmatrix[length(vecalfaPvalue)+length(vecBFkrit)+2, l], type="p", 

pch=3, cex=2, col= colours[l], 

          EqtestmatricesPow$EqCI[l,i,1]) 

     

        result = paste("Effectsize Cohen's h =", vecCohensH[[i+1]]) 

    mtext(result,3) 

  }}   

 

#make one plot that displays the mean over the 4 effectsizes 

plot() 



DECISION QUALITIES OF BAYESIAN AND FREQUENTIST HYPOTHESIS TESTS 71 

dev.new() 

 

#set up plot 

plot(c(0,0.12),c(0,0.8), yaxs= "i", type = "n", col= colours,  

     xlab = "Prop False Positives", ylab = "Prop True Positives", cex.lab = 

1.4 ) 

 

#add legend 

legend("bottom",  

       c("p-value","BF", "HDI&ROPE","CI&ROPE"), cex = 1, 

       lty = c(1,3,NA,NA), y.intersp = 0.8, inset = 0.1, 

       pch = c(19,19,2,3), pt.bg = c("white","white" ,"white" ,"white" ), 

       x.intersp = 1, 

       pt.cex = c(1.5,1.5,1.5,1.5),  lwd=2, 

       box.lty = 0) 

 

op = par(cex= 1)     

legend("bottomright", paste0("N=", 

                             as.character(vecSamplesize[7:1])), inset = 0.01, 

       y.intersp = 0.8, fill=colours[7:1], border = NA, 

       box.lty = 0) 

 

# add lines in plot 

for(l in 1:( length(vecSamplesize))){ 

   

  lines(meanmatriceEffectsizes[1:length(vecalfaPvalue),l],  

        

meanmatriceEffectsizes[(length(vecalfaPvalue)+length(vecBFkrit)+1):(length(vecalfaPval

ue)+length(vecBFkrit)+length(vecalfaPvalue)),l], 

        type="l", pch=20, lty=1, col= colours[l], lwd=2) 

   

  lines(meanmatriceEffectsizes[1:length(vecalfaPvalue),l],  

        

meanmatriceEffectsizes[(length(vecalfaPvalue)+length(vecBFkrit)+1):(length(vecalfaPval

ue)+length(vecBFkrit)+length(vecalfaPvalue)),l], 

        type="p", pch=19, lty=1, col= colours[l], lwd=2) 

   

  

lines(meanmatriceEffectsizes[(length(vecalfaPvalue)+1):(length(vecalfaPvalue)+length(v

ecBFkrit)),l],  

        

meanmatriceEffectsizes[((2*length(vecalfaPvalue)+length(vecBFkrit)+1):(2*length(vecBFk

rit)+2*length(vecalfaPvalue))),l], 

        type="b", pch=19, lty=3, col= colours[l], lwd=2) 

   

  lines(FAmatrix[length(vecalfaPvalue)+length(vecBFkrit)+1, l], type="p", 

pch=2, cex=2, col= colours[l], 

        meanHDI[l]) 

  lines(FAmatrix[length(vecalfaPvalue)+length(vecBFkrit)+2, l], type="p", 

pch=3, cex=2, col= colours[l], 

        meanCI[l]) 

   

} 
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Appendix 7: R code functie alfa_to_BFcrit 

alfa_to_BFcrit <- function(N, alfa, aprior, bprior, nullvalue, ratio= 

c("BF10", "BF01"))  

  # by: Joukje Willemsen 

  # calculate the corresponding critical bayes factor that would yield 

equal "rejection regions" as the specified alfa 

   

{ 

   

  # only 1 output if aprior = bprior (symmetrical rejection regions): 

  if (aprior == bprior) { 

   

  x=qbinom(0.5*alfa, size=N, prob = nullvalue) #from alfa to minimal 

observed number of heads to be significant 

  if (2*(pbinom(x, N, nullvalue)) > alfa) {x= qbinom(0.5*alfa, size=N, 

prob = nullvalue)-1} 

   

  if (ratio=="BF01") {BFcrit= 1/(( exp( lbeta(aprior+x,bprior+N-x) - 

lbeta(aprior,bprior) ) / ( nullvalue^x * (1.0-nullvalue)^(N-x) ) ))}  

  if (ratio=="BF10") {BFcrit= ( exp( lbeta(aprior+x,bprior+N-x) - 

lbeta(aprior,bprior) ) / ( nullvalue^x * (1.0-nullvalue)^(N-x) ) )   } 

    return(BFcrit) 

  } 

   

  # otherwise 2 outputs are necessary (nonsymmetrical rejection 

regions) 

  else {  

      xl=qbinom(0.5*alfa, size=N, prob = nullvalue, lower.tail=TRUE) 

#from alfa to maximal observed number of heads to be significant (left tail) 

      if (2*(pbinom(xl, N, nullvalue)) > alfa) {xl= qbinom(0.5*alfa, 

size=N, prob = nullvalue, lower.tail=TRUE)-1} 

       

      xu=qbinom(0.5*alfa, size=N, prob = nullvalue, lower.tail=FALSE) 

#from alfa to minimal observed number of heads to be significant (right tail) 

      if (2*(pbinom(xu, N, nullvalue)) > alfa) {xu= qbinom(0.5*alfa, 

size=N, prob = nullvalue, lower.tail=FALSE)+1} 

     

      if (ratio=="BF10") { 

        A = ( exp( lbeta(aprior+xl,bprior+N-xl) - 

lbeta(aprior,bprior) ) / ( nullvalue^xl * (1.0-nullvalue)^(N-xl) ) )  

        lA = ( exp( lbeta(aprior+(xl-1),bprior+N-(xl-1)) - 

lbeta(aprior,bprior) ) / ( nullvalue^(xl-1) * (1.0-nullvalue)^(N-(xl-1)) ) )  

         

        B = ( exp( lbeta(aprior+xu,bprior+N-xu) - 

lbeta(aprior,bprior) ) / ( nullvalue^xu * (1.0-nullvalue)^(N-xu) ) )  

        uB = ( exp( lbeta(aprior+(xu+1),bprior+N-(xu+1)) - 

lbeta(aprior,bprior) ) / ( nullvalue^(xu+1) * (1.0-nullvalue)^(N-(xu+1)) ) )  

 

       

        if (A>lA) {signa = ">="} 

        if (A<lA) {signa = "<="} 

         

        if (B<uB) {signb = ">="} 

        if (B>uB) {signb = "<="} 
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        return (paste("BFcritleft", signa, A, "  BFcritright", signb, 

B)) } 

   

   if (ratio=="BF01") { 

        A = (1/( exp( lbeta(aprior+xl,bprior+N-xl) - 

lbeta(aprior,bprior) ) / ( nullvalue^xl * (1.0-nullvalue)^(N-xl) ) ) ) 

       lA = (1/( exp( lbeta(aprior+(xl-1),bprior+N-(xl-1)) - 

lbeta(aprior,bprior) ) / ( nullvalue^(xl-1) * (1.0-nullvalue)^(N-(xl-

1)) ) ) ) 

        

       B = (1/( exp( lbeta(aprior+xu,bprior+N-xu) - 

lbeta(aprior,bprior) ) / ( nullvalue^xu * (1.0-nullvalue)^(N-xu) ) ) ) 

       uB = (1/( exp( lbeta(aprior+(xu+1),bprior+N-(xu+1)) - 

lbeta(aprior,bprior) ) / ( nullvalue^(xu+1) * (1.0-nullvalue)^(N-

(xu+1)) ) ) ) 

        

        

       if (A>lA) {signa = ">="} 

       if (A<lA) {signa = "<="} 

        

       if (B<uB) {signb = ">="} 

       if (B>uB) {signb = "<="} 

   

  return (paste("BFcritleft", signa, (A), "  BFcritright", signb, 

(B))) } 

  }  

} 

 

 

 


